https://www.selleckchem.com/products/rk-701.html It directly extracts semantic labels from available sentence corpus without additional labor cost, which further provides a global similarity constraint for the aggregated region-word similarity obtained by the local alignment. Extensive experiments on Flickr30k and Microsoft COCO (MSCOCO) data sets demonstrate the effectiveness of the proposed CASC on preserving global semantic consistence along with the local alignment and further show its superior image-text matching performance compared with more than 15 state-of-the-art methods.High-level semantic knowledge in addition to low-level visual cues is essentially crucial for co-saliency detection. This article proposes a novel end-to-end deep learning approach for robust co-saliency detection by simultaneously learning high-level groupwise semantic representation as well as deep visual features of a given image group. The interimage interaction at the semantic level and the complementarity between the group semantics and visual features are exploited to boost the inferring capability of co-salient regions. Specifically, the proposed approach consists of a co-category learning branch and a co-saliency detection branch. While the former is proposed to learn a groupwise semantic vector using co-category association of an image group as supervision, the latter is to infer precise co-salient maps based on the ensemble of group-semantic knowledge and deep visual cues. The group-semantic vector is used to augment visual features at multiple scales and acts as a top-down semantic guidance for boosting the bottom-up inference of co-saliency. Moreover, we develop a pyramidal attention (PA) module that endows the network with the capability of concentrating on important image patches and suppressing distractions. The co-category learning and co-saliency detection branches are jointly optimized in a multitask learning manner, further improving the robustness of the approach. We c