salicina ΦPT = 0.301, 30%; A. stenophylla ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. https://www.selleckchem.com/products/MLN8237.html stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co-occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors.Meiotic drivers have been proposed as a potent evolutionary force underlying genetic and phenotypic variation, genome structure, and also speciation. Due to their strong selective advantage, they are expected to rapidly spread through a population despite potentially detrimental effects on organismal fitness. Once fixed, autosomal drivers are cryptic within populations and only become visible in between-population crosses lacking the driver or corresponding suppressor. However, the assumed ubiquity of meiotic drivers has rarely been assessed in crosses between populations or species. Here we test for meiotic drive in hybrid embryos and offspring of Timor and Australian zebra finches-subspecies that have evolved in isolation for about two million years-using 38,541 informative transmissions of 56 markers linked to either centromeres or distal chromosome ends. We did not find evidence for meiotic driver loci on specific chromosomes. However, we observed a weak overall transmission bias toward Timor alleles at centromeres in females (transmission probability of Australian alleles of 47%, nominal p = 6 × 10-5). While this is in line with the centromere drive theory, it goes against the expectation that the subspecies with the larger effective population size (i.e., the Australian zebra finch) should have evolved the more potent meiotic drivers. We thus caution against interpreting our finding as definite evidence for centromeric drive. Yet, weak centromeric meiotic drivers may be more common than generally anticipated and we encourage further studies that are designed to detect also small effect meiotic drivers.Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio-temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage-grouse (Centrocercus urophasianus; sage-grouse) at the range-wide scale. Finer-scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage-grouse in the United States. We quantified seasonal second-order habitat selection for sage-grouse across the state of Utah to produce spatio-temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sagto range-wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide-ranging species.The fragmentation and homogenization of habitats have seriously affected the fishery resources of the Pearl River. To protect the fishery resources, a novel artificial habitat, constructed using bamboo and palm slices, was deployed in the Youjiang River, a tributary of the Pearl River in China. The results of field and laboratory experiments showed that fish abundance, species richness and Shannon-Wiener diversity index were higher in the artificial habitats than at the control sites. There was no significant impact on fish biomass, as the artificial habitats attracted more Cultrinae and Gobioninae fish that are of a smaller size. Artificial habitats can serve as spawning grounds for fish that produce sticky eggs and refuges that improve the survival rates of juvenile fishes. This study revealed that this novel artificial habitat created suitable habitats and suitable spawning substrate for fish, improved fish richness and diversity in the structureless freshwater ecosystem like the Youjiang River.The geographic and biological diversity of China has resulted in the differential adaptation of the eastern honeybee, Apis cerana, to these varied habitats. A. cerana were collected from 14 locations in China. Their genomes were sequenced, and nucleotide polymorphisms were identified at more than 9 million sites. Both STRUCTURE and principal component analysis placed the bees into seven groups. Phylogenomic analysis groups the honeybees into many of the same clusters with high bootstrap values (91%-100%). Populations from Tibet and South Yunnan are sister taxa and together represent the earliest diverging lineage included in this study. We propose that the evolutionary origin of A. cerana in China was in the southern region of Yunnan Province and expanded from there into the southeastern regions and into the northeastern mountain regions. The Cold-Temperate West Sichuan Plateau and Tropical Diannan populations were compared to identify genes under adaptive selection in these two habitats. Pathway enrichment analysis showing genes under selection, including the Hippo signaling pathway, GABAergic pathway, and trehalose-phosphate synthase, indicates that most genes under selection pressure are involved in the process of signal transduction and energy metabolism. qRT-PCR analysis reveals that one gene under selection, the AcVIAAT gene, involved in the GABAergic pathway, is responding to cold temperature stress. Through homologous recombination, we show that the AcVIAAT gene is able to replace the CNAG_01904 gene in the fungus Cryptococcus neoformans and that it makes the fungus less sensitive to conditions of oxidative stress and variations in temperature. Our results contribute to our understanding of the evolutionary origin of A. cerana in China and the molecular basis of environmental adaptation.