The ATM and ATR inhibitors were effectively inducing senescence when combined with IR. The DNA-PK inhibitor was not an important inductor of senescence. HPV status and HR activity had a limited influence on the efficacy of DDRi. Induction of senescence and necrosis varied individually among the cell lines due to molecular heterogeneity and the involvement of DNA damage response pathways in senescence induction.Waveguides with sub-100 nm thickness offer a promising platform for sensors. We designed and analyzed multimode interference (MMI) devices using these ultrathin platforms for use as biosensors. To verify our design methodology, we compared the measured and simulated spectra of fabricated 220-nm-thick MMI devices. Designs of the MMI biosensors based on the sub-100 nm platforms have been optimized using finite difference time domain simulations. At a length of 4 mm, the 50-nm-thick MMI sensor provides a sensitivity of roughly 420 nm/RIU and with a figure of merit (FOM) definition of sensitivity/full-width-at-half-maximum, the FOM is 133. On the other hand, using a thickness of 70 nm results in a more compact design-only 2.4 mm length was required to achieve a similar FOM, 134, with a sensitivity of 330 nm/RIU. The limits of detection (LOD) were calculated to be 7.1 × 10-6 RIU and 8.6 × 10-6 RIU for the 50 nm and the 70-nm-thick sensor, respectively. The LOD for glucose sensing was calculated to be less than 10 mg dL-1 making it useful for detecting glucose in the diabetic range. The biosensor is also predicted to be able to detect layers of protein, such as biotin-streptavidin as thin as 1 nm. The ultrathin SOI waveguide platform is promising in biosensing applications using this simple MMI structure.Population ageing is having a direct influence on serious health issues, including hampered mobility and physical decline. Good habits in performing physical activities, in addition to eating and drinking, are essential to improve the life quality of the elderly population. Technological solutions, aiming at increasing awareness or providing reminders to eat/drink regularly, can have a significant impact in this scenario. These solutions enable the possibility to constantly monitor deviations from users' normal behavior, thus allowing reminders to be provided to users/caregivers. In this context, this paper presents a radio-frequency identification (RFID) system to monitor user's habits, such as the use of food, beverages, and/or drugs. The device was optimized to fulfill specifications imposed by the addressed application. The approach could be extended for the monitoring of home appliances, environment exploitation, and activity rate. Advantages of the approach compared to other solutions, e.g., based on cameras, are related to the low level of invasiveness and flexibility of the adopted technology. A major contribution of this paper is related to the wide investigation of system behavior, which is aimed to define the optimal working conditions of the system, with regards to the power budget, user (antenna)-tag reading range, and the optimal inter-tag distance. To investigate the performance of the system in tag detection, experiments were performed in a scenario replicating a home environment. To achieve this aim, specificity and sensitivity indexes were computed to provide an objective evaluation of the system performance. For the case considered, if proper conditions are meet, a specificity value of 0.9 and a sensitivity value of 1 were estimated.Hypoxia-a hallmark of solid tumors-dramatically impairs radiotherapy, one of the most common anticancer modalities. The adverse effect of the low-oxygen state can be eliminated by the concomitant use of a hypoxic cell radiosensitizer. In the present paper, we show that 5-(N-trifluoromethylcarboxy) aminouracil (CF3CONHU) can be considered as an effective radiosensitizer of DNA damage, working under hypoxia. The title compound was synthesized in the reaction of 5-aminouracil and trifluoroacetic anhydride in trifluoroacetic acid. Then, an aqueous and deoxygenated solution of the HPLC purified compound containing tert-butanol as a hydroxyl radical scavenger was irradiated with X-rays. Radiodegradation in a 26.67 ± 0.31% yield resulted in only one major product-N-uracil-5-yloxamic acid. The mechanism that is possibly responsible for the formation of the observed radioproduct has been elucidated with the use of DFT calculations. https://www.selleckchem.com/products/OSI-906.html The cytotoxic test against the PC3 prostate cancer cell line and HDFa human dermal fibroblasts confirmed the low cytotoxicity of CF3CONHU. Finally, a clonogenic assay and flow cytometric analysis of histone H2A.X phosphorylation proved the radiosensitization in vitro.A series of nineteen amino acid analogues of amantadine (Amt) and rimantadine (Rim) were synthesized and their antiviral activity was evaluated against influenza virus A (H3N2). Among these analogues, the conjugation of rimantadine with glycine illustrated high antiviral activity combined with low cytotoxicity. Moreover, this compound presented a profoundly high stability after in vitro incubation in human plasma for 24 h. Its thermal stability was established using differential and gravimetric thermal analysis. The crystal structure of glycyl-rimantadine revealed that it crystallizes in the orthorhombic Pbca space group. The structure-activity relationship for this class of compounds was established, with CoMFA (Comparative Molecular Field Analysis) 3D-Quantitative Structure Activity Relationships (3D-QSAR) studies predicting the activities of synthetic molecules. In addition, molecular docking studies were conducted, revealing the structural requirements for the activity of the synthetic molecules.In-vivo sensors yield valuable medical information by measuring directly on the living tissue of a patient. These devices can be surface or implant devices. Electrical activity in the body, from organs or muscles can be measured using surface electrodes. For short term internal devices, catheters are used. These include cardiac catheter (in blood vessels) and bladder catheters. Due to the size and shape of the catheters, silicon devices provided an excellent solution for sensors. Since many cardiac catheters are disposable, the high volume has led to lower prices of the silicon sensors. Many catheters use a single sensor, but silicon offers the opportunity to have multi sensors in a single catheter, while maintaining small size. The cardiac catheter is usually inserted for a maximum of 72 h. Some devices may be used for a short-to-medium period to monitor parameters after an operation or injury (1-4 weeks). Increasingly, sensing, and actuating, devices are being applied to longer term implants for monitoring a range of parameters for chronic conditions.