In this work, we analyzed freshly emitted particles from ship exhaust in the Guangzhou port region before and after the implementation of a clean fuel policy. We used a single particle aerosol mass spectrometer (SPAMS) to measure the changes in the chemical compositions of single particles and evaluate the role of V as a tracer for ship emissions. Particles from high sulfur fuel (SF) oil (HS) combustion ships consisted of 54.8% elemental carbon-vanadium-sulfate (EC-V-S) and 25.0% vanadium-sulfate (V-S) particles, while particles from low SF oil (LS) combustion ships were composed of 38.7% organic carbon-sulfate (OC-S) and 28.6% elemental and organic carbon (ECOC) particles. The sulfate-containing particles exhibited a moderate decrease from 95% in HS emissions to 78% in LS emissions, which still suggests the dominant role of sulfate in LS emissions after the implementation of a clean fuel policy. The V-containing particles showed a sharp decrease from 67% in HS emissions to 14% in LS emissions along with the decrease in the relative peak area (RPA) of V, suggesting a remarkable reduction in V in ship exhaust. https://www.selleckchem.com/products/VX-745.html The count of V-containing particles in urban Guangzhou in June 2017 was generally ten times lower than that in June 2016, which was in accordance with the sharp decrease in V-containing particles in LS emissions rather than in HS emissions. Despite the decrease in V in source-oriented ship emitted particles, the ubiquitous distribution of V in particles from lower SF combustion ships suggests V is still effective as a tracer of ship emissions in port regions after the implementation of the clean fuel policy. Furthermore, the particles from LS emissions were investigated in comparison to those from gasoline vehicles (GV), diesel vehicles (DV) and coal combustion (CC) sources to better resolve ship-related particles in port regions. In this study, a fuzzy-vertex-based virtual-water analysis method (FVAM) is developed for assessing the virtual water content (VWC) of main agricultural products, imports, and exports at a national scale. FVAM has advantages in quantifying state-level VWC with a bottom-up approach and reflecting uncertain parameters based on vertex analysis technique. FVAM is applied to a real case of Kazakhstan in Central Asia. Results reveal that (i) the VWC of Kazakhstan's agricultural products is between 55.61 and 83.98 billion m3/yr in 2000-2016, where wheat is the largest water consumer and the Kostanay state has the largest VWC; (ii) Kazakhstan is a net exporter of virtual water, most of which flows to neighboring countries such as Russia and Azerbaijan; (iii) uncertainties in crop coefficient (Kc), feed water requirement (FWR), drinking water requirement (DWR) and service water requirement (SWR) can affect the VWC assessment; (iv) the massive export of water-intensive products makes the water resources more severe in Kazakhstan, which further squeezes the local ecological water use. Therefore, reducing the export of virtual water should be the focus of future agricultural policies. The findings are useful for decision makers to optimize Kazakhstan's agricultural structure, mitigate the national water scarcity, and facilitate the regional sustainable development. The stabilization and preservation of soil organic matter have been attributed to the strong reactive sites of mineral surfaces that cause physical isolation and chemical stabilization due to the organic-mineral interface. However, much of the micro-scale knowledge about interactions between organic ligands and minerals largely remains at the qualitative level, and neglects the heterogeneity of functional groups of organic matter. Here, we report the use of molecular-scale technologies of two-dimensional FTIR Correlation Spectroscopy (2D-FTIR-CoS) and X-ray Photoelectron Spectroscopy (XPS) to directly measure the binding processes of humic acid (JGHA) groups onto kaolinite surface. The spectroscopy results showed that the carboxylate groups, aliphatic OH and aromatic structure participate in the binding of JGHA on kaolinite surface. The carboxylic and phenolic hydroxyl interact with kaolinite surface through the interfacial COAl/Si bonds. Kaolinite prefers to adsorb C-groups at pH 4.0 and O-groups at pH 8.0. The interaction of COO- group at 1566 cm-1 of JGHA leads to the formation of inner-sphere complex first and then outer-sphere complex with increasing contact time. The interaction of COOH group at 1261 cm-1 with the AlOH2+ of kaolinite was could be ascribed to ligand exchange and/or electrostatic attraction, whose contribution was evaluated to be 13.90%, 7.65% and 0% at pH 4.0, 6.0 and 8.0, respectively. These results of molecular binding provide quantitative mechanistic insights into organic-mineral interactions and expound the effect of functional groups of HA on binding mechanisms, and thus bring important clues for better understanding the mobility and transformation of land‑carbon including mineral-bound carbon. Nutrition-Sensitive Agriculture (NSA) is a novel concept in agriculture that considers not only yield, but also nutritional value of produce, sustainability of production, and ecological impact of agriculture. In accordance with its goals, NSA would benefit from applying microbial-based products as they are deemed more sustainable than their synthetic counterparts. This study characterized 3 plant-beneficial bacterial strains (Paenibacillus pasadenensis strain R16, Pseudomonas syringae strain 260-02, Bacillus amyloliquefaciens strain CC2) on their biocontrol activity and effect on nutritional and texture quality of romaine lettuce plants (Lactuca sativa) in greenhouse. The pathogens used in the trials are Rhizoctonia solani and Pythium ultimum. The obtained results indicate that strain R16 had a significant ability to cause a statistically significant reduction in the symptoms caused by both P. ultimum (reduction of 32%) and R. solani (reduction of 42%), while the other two strains showed a less efficient bioplant. V.The widespread use of polystyrene (PS) products in a myriad of consumer products has resulted in widespread contamination of PS nanoplastics (PSNPs) in aquatic ecosystems. Fish early life stages are exposed to nanoplastics dermally and via gills. Additional routes of exposure include oral via the ingestion of contaminated prey and maternal transfer. However, there is limited amount of work studying the impact of exposure route in the toxicokinetics and toxicodynamics of PSNPs. The objective of this study was to compare the effects of exposure routes (aqueous and microinjection) on the organ distribution and toxicity of PSNPs. We "mimicked" the maternal exposure of PSNPs to zebrafish by injecting a known concentration of fluorescent particles directly into 2-cell stage embryos. Endpoints were collected starting at 96 h post-fertilization until several weeks post-hatch to evaluate depuration. Although both exposure routes led to the accumulation of PSNPs in the yolk sac followed by brain, eyes, gut and swim bladder, the aqueous exposure caused higher PSNP concentrations in the brain and eyes and the injection exposure caused PSNP accumulation mainly in the trunk area.