Cultural psychology has raised awareness of religiosity, spirituality, and secularism in people's psychological lives. This article takes a cultural-developmental approach by examining the development of religiosity, spirituality, and secularism among culturally diverse adolescents. At the outset, an explanation is provided as to why the valid study of peoples' psychological lives necessitates taking culture into account, and of key implications for theory and methodology. Throughout research on adolescent religiosity, spirituality, and secularism is described, including studies on conceptions of God, afterlife beliefs, the development of an Ethic of Divinity in moral reasoning, recent increases in spirituality and secularism, and the impact of globalization on worldviews and religiously-based puberty rituals. While the focus is on adolescents, the article includes relevant research with children and emerging adults. Concrete future research directions are proposed, including a call to address the extent to which effects of religion on adolescents are dependent on culture and globalization.The main aim of the present study is to disclose the similarities or differences of the climate effects on the COVID-19 outbreak in two countries, which have different climatic conditions. Using the correlation modeling, the results revealed that some climatic factors, such as the ULR, temperature, and CH4 in the UAE and aerosol index and NO2 in Switzerland have positive lagged correlations with the outburst of COVID-19 by intensifying role within - 9, - 7, and - 2 days. The mitigating role was also observed for ozone/solar radiation and temperature/long-wave radiation in the UAE and Switzerland, respectively. The initial hypotheses of the research have confirmed the correlations between new cases of COVID-19 and ULR and aerosol indices in the UAE and Switzerland. However, the main finding revealed that the climate effects on the COVID-19 outbreak show different roles in the different countries, locating in dissimilar climatic zones. Accordingly, the COVID-19 can be intensified by increases of the ULR and temperature in an arid region, while it can be exactly mitigated by increases of these factors in a temperate area. This finding may be useful for future researches for identifying the essential influencing factors for the mitigating COVID-19 outbreak.Microfluidics has emerged as a powerful analytical tool for biology and biomedical research, with uses ranging from single-cell phenotyping to drug discovery and medical diagnostics, and only small sample volumes required for testing. The ability to rapidly prototype new designs is hugely beneficial in a research environment, but the high cost, slow turnaround, and wasteful nature of commonly used fabrication techniques, particularly for complex multi-layer geometries, severely impede the development process. In addition, microfluidic channels in most devices currently play a passive role and are typically used to direct flows. The ability to "functionalize" the channels with different materials in precise spatial locations would be a major advantage for a range of applications. https://www.selleckchem.com/products/k03861.html This would involve incorporating functional materials directly within the channels that can partake in, guide or facilitate reactions in precisely controlled microenvironments. Here we demonstrate the use of Aerosol Jet Printing (AJP) to rapidly produce bespoke molds for microfluidic devices with a range of different geometries and precise "in-channel" functionalization. We show that such an advanced microscale additive manufacturing method can be used to rapidly design cost-efficient and customized microfluidic devices, with the ability to add functional coatings at specific locations within the microfluidic channels. We demonstrate the functionalization capabilities of our technique by specifically coating a section of a microfluidic channel with polyvinyl alcohol to render it hydrophilic. This versatile microfluidic device prototyping technique will be a powerful aid for biological and bio-medical research in both academic and industrial contexts.Coronavirus disease 19 (COVID-19) is the latest pandemic resulted from the coronavirus family. Due to the high prevalence of this disease, its high mortality rate, and the lack of effective treatment, the need for affordable and accessible drugs is one of the main challenges in this regard. It has been proved that RdRp, 3CL, Spike, and Nucleocapsid are the most important viral proteins playing vital roles in the processes of proliferation and infection. Therefore, we started studying a wide range of bio-peptides and then conducted molecular docking analyses to investigate their binding affinity for the inhibition of these proteins. After obtaining the best bio-peptides with the highest affinity scores, they were examined for further study and then manipulated to eliminate their side effects. Additionally, the molecular dynamic simulation was performed to validate the structure and interaction stability. The results of this study reveal that glycocin F from Lactococcus lactis and lactococcine G from Lactobacillus plantarum had the high affinities to bind to the viral proteins, and the manipulation of their sequence also led to the side effects' elimination. In addition, in some cases, their affinities to attach the SARS-CoV-2 proteins have increased. It seems that these two drugs which were discovered and designed, are optimal for treating the COVID-19 infection. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. The incidence of acute cardiac injury in COVID-19 patients is very often subclinical and can be detected by cardiac magnetic resonance imaging. The aim of this study was to assess if subclinical myocardial dysfunction could be identified using left ventricular global longitudinal strain (LV-GLS) in patients hospitalized with COVID-19. We performed a search of COVID-19 patients admitted to our institution from January 1st, 2020 to June 8th, 2020, which revealed 589 patients (mean age=66±18, male=56%). All available 60 transthoracic echocardiograms (TTE) were reviewed and off-line assessment of LV-GLS was performed in 40 studies that had sufficient quality images and the views required to calculate LV-GLS. We also analyzed electrocardiograms and laboratory findings including inflammatory markers, Troponin-I, and B-type natriuretic peptide (BNP). Of 589 patients admitted with COVID-19 during our study period, 60 (10.1%) underwent TTE during hospitalization. Findings consistent with overt myocardial involvement included reduced ejection fraction (23%), wall motion abnormalities (22%), low stroke volume (82%) and increased LV wall thickness (45%).