https://www.selleckchem.com/products/sb290157-tfa.html The improvement of cathode performance has always been the bottleneck and research hot spot for microbial fuel cells (MFCs). An Fe3O4@NiFe-LDH composite with a nanoscale core-shell structure containing an Fe3O4 magnetic core and a layered double hydroxide (LDH) shell was prepared by the hydrothermal method. The Fe3O4@NiFe-LDH was characterized by FT-IR, XRD, SEM and EDS. The characterization results showed that the composite had a unique cauliflower-like nanoflake structure and special pore size distribution, which greatly improved the ORR performance. Moreover, the use of the synthesized Fe3O4@NiFe-LDH core-shell structure as an electrode in an MFC was characterized by CV and LSV, which showed that the Fe3O4@NiFe-LDH exhibited excellent ORR catalytic properties. The voltage output of the Fe3O4@NiFe-LDH MFC was maintained at approximately 0.39 V, with insignificant variations over 110 h. The maximum power density was 211.40 ± 2.27 mW/m2, which was 34 times that of the blank control group MFC and was caused by the many electroactive sites, good rate capability and remarkable cycling stability of LDH. This study provides the possibility for using Fe3O4@NiFe-LDH in cathodes to operate continuously and at low cost in fuel cells.Anaerobic digestion is an attractive process in wastewater treatment plants (WWTPs) to achieve simultaneous sludge reduction and energy recovery. While converting the majority of organic carbon to biogas (mainly consisting 60%CH4 + 40%CO2), the high-strength anaerobic digestion liquor consists of a high level of nitrogen concentration. The feasibility of utilizing biogas produced in-situ to achieve satisfactory nitrogen removal performance from partially nitrified anaerobic digestion liquor was examined in this study. To this end, a membrane biofilm reactor (MBfR) was used to couple nitrite- or nitrate-dependent anaerobic methane oxidation (n-DAMO) and anammox microorganisms, which was suppli