https://www.selleckchem.com/products/secinh3.html Mechanically responsive smart windows with adjustable light transmittance have attracted more and more attention due to their great potential in our daily life. However, their fabrication normally requires complicated preparation such as oxygen plasma treatment and high-cost materials (i.e., poly(dimethylsiloxane) (PDMS)), which hinders their practical applications. Herein, a principally different mechanically responsive smart window, i.e., a pressure-responsive smart window, is reported, which is achieved by harnessing the synergistic interactions (i.e., hydrogen bonding and surface roughness compensation) between the two constituent parts, i.e., hydrogel and agar films. The pressure-responsive smart window features the ultrafast response time (37.5 ms) and high transmittance changes (∼50%) with excellent repeatability, which can be stained with different colors and operated on a flexible substrate. Since the pressure-responsive smart window enables the utilization of the low-cost material and does not require the external energy input, it is anticipated that it may have great potential in practical applications.Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent wi