the staff already had antibodies, suggesting prior infection. The majority of these antibodies bind to the receptor-binding domain of the SARS-CoV-2 spike protein and are potently neutralizing and stable for many months. The non-outbreak site had two unique introductions of SARS-CoV-2 into the facility, but these did not result in workplace spread or outbreaks. Our results reveal that high seroprevalence among staff can contribute to immunity and protect against subsequent infection and spread within a facility.Antibiotic resistance is a global challenge for tuberculosis control, and accelerating its diagnosis is critical for therapy decisions and controlling transmission. Genotype-based molecular diagnostics now play an increasing role in accelerating the detection of such antibiotic resistance, but their accuracy depends on the instructed detection of genetic variations. Genetic mobile elements such as IS6110 are established sources of genetic variation in Mycobacterium tuberculosis, but their implication in clinical antibiotic resistance has thus far been unclear. Here, we describe the discovery of an intragenic IS6110 insertion into Rv0678 that caused antibiotic resistance in an in vitro-selected M. tuberculosis isolate. The subsequent development of bioinformatics scripts allowed genome-wide analysis of intragenic IS6110 insertions causing gene disruptions in 6,426 clinical M. tuberculosis strains. This analysis identified 10,070 intragenic IS6110 insertions distributed among 333 different genes. Focusing on geetect the most common antibiotic-resistance-conferring mutations in the form of single nucleotide changes, small deletions, or insertions. Mobile genetic elements, named IS6110, are also known to move within the M. tuberculosis genome and cause significant genetic variations, although the role of this variation in clinical drug resistance remains unclear. In this work, we show that both in vitro and in data analyzed from 6,426 clinical M. tuberculosis strains, IS6110 elements are found that disrupt specific genes essential for the function of a number of pivotal antituberculosis drugs. By providing ample evidence of clinically relevant IS6110-mediated drug resistance, we believe that this shows that this form of genetic variation must not be overlooked in molecular diagnostics of drug resistance.The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and mved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.Bacteria have necessarily evolved a protective arsenal of proteins to contend with peroxides and other reactive oxygen species generated in aerobic environments. Listeria monocytogenes encounters an onslaught of peroxide both in the environment and during infection of the mammalian host, where it is the causative agent of the foodborne illness listeriosis. Despite the importance of peroxide for the immune response to bacterial infection, the strategy by which L. monocytogenes protects against peroxide toxicity has yet to be illuminated. Here, we investigated the expression and essentiality of all the peroxidase-encoding genes during L. https://www.selleckchem.com/products/tak-243-mln243.html monocytogenes growth in vitro and during infection of murine cells in tissue culture. We found that chdC and kat were required for aerobic growth in vitro, and fri and ahpA were each required for L. monocytogenes to survive acute peroxide stress. Despite increased expression of fri, ahpA, and kat during infection of macrophages, only fri proved necessary for cytosolic growth. In contrast, the proteins encoded by lmo0367, lmo0983, tpx, lmo1609, and ohrA were dispensable for aerobic growth, acute peroxide detoxification, and infection. Together, our results provide insight into the multifaceted L. monocytogenes peroxide detoxification strategy and demonstrate that L. monocytogenes encodes a functionally diverse set of peroxidase enzymes. IMPORTANCE Listeria monocytogenes is a facultative intracellular pathogen and the causative agent of the foodborne illness listeriosis. L. monocytogenes must contend with reactive oxygen species generated extracellularly during aerobic growth and intracellularly by the host immune system. However, the mechanisms by which L. monocytogenes defends against peroxide toxicity have not yet been defined. Here, we investigated the roles of each of the peroxidase-encoding genes in L. monocytogenes growth, peroxide stress response, and virulence in mammalian cells.