https://www.selleckchem.com/Bcl-2.html RT and exponential MFR vs. MUAPAMP relationships were calculated for each subject. The level of significance was set at p ≤ 0.05. B terms for the MFR vs. MUAPAMP relationships (p = 0.001, REPL = -4.77 ± 1.82 pps·mV, REP90 = -2.63 ± 1.00 pps·mV) and predicted MFRs for MUs recruited at 40% MVC (p less then 0.001, REPL = 11.14 ± 3.48 pps, REP90 = 18.38 ± 2.60 pps) were greater for REP90 than REPL indicating firing rates were greater during REP90. In addition, larger mean (p = 0.038, REPL = 0.178 ± 0.0668 mV, REP90 = 0.263 ± 0.128 mV) and maximum (p = 0.008, REPL = 0.320 ± 0.127 mV, Rep90 = 0.520 ± 0.234 mV) MUAPAMPS were recorded during REP90 than REPL. Larger MUs were recruited and similar sized MUs maintained greater firing rates during a high-intensity contraction in comparison to a moderate-intensity contraction performed at fatigue. Individuals seeking maximized activation of the MU pool should use high-intensity resistance training paradigms rather than moderate-intensity to fatigue.Davletyarova, K, Vacher, P, Nicolas, M, Kapilevich, LV, and Mourot, L. Associations between heart rate variability-derived indexes and training load repeated measures correlation approach contribution. J Strength Cond Res XX(X) 000-000, 2020-This study aimed to evaluate whether similar associations between indexes derived from heart rate variability (HRV) analyses and training load (TL) could be obtained by using the commonly used Pearson correlation technique and the repeated measures correlation (rmcorr). Fourteen well-trained swimmers (18.5 ± 1.6 years) participated. The training period lasted 4 weeks with a gradual increase in TL. Daily external TL (exTL) and internal TL (inTL) were summed to obtain a weekly TL, and HRV analyses were performed every Saturday morning. During the 4-week period, exTL and inTL increased (p less then 0.05) together with a decrease (p less then 0.05) in heart rate and an increase (p less then 0.05) of cardiac paras