Atomic dopants and defects play a crucial role in creating new functionalities in 2D transition metal dichalcogenides (2D TMDs). Therefore, atomic-scale identification and their quantification warrant precise engineering that widens their application to many fields, ranging from development of optoelectronic devices to magnetic semiconductors. Scanning transmission electron microscopy with a sub-Å probe has provided a facile way to observe local dopants and defects in 2D TMDs. However, manual data analytics of experimental images is a time-consuming task, and often requires subjective decisions to interpret observed signals. Therefore, an approach is required to automate the detection and classification of dopants and defects. In this study, based on a deep learning algorithm, fully convolutional neural network that shows a superior ability of image segmentation, an efficient and automated method for reliable quantification of dopants and defects in TMDs is proposed with single-atom precision. The approach demonstrates that atomic dopants and defects are precisely mapped with a detection limit of ≈1 × 1012 cm-2 , and with a measurement accuracy of ≈98% for most atomic sites. Furthermore, this methodology is applicable to large volume of image data to extract atomic site-specific information, thus providing insights into the formation mechanisms of various defects under stimuli.Particulate matter (PM) is one of the most severe air pollutants and poses a threat to human health. Air filters with high filtration efficiency applied to the source of PM are an effective way to reduce pollution. However, many of the present filtration materials usually fail because of their high pressure drop under high-velocity airflow and poor thermal stability at high temperatures. Herein, a highly porous Si3 N4 nanofiber sponge (Si3 N4 NFS) assembled by aligned and well-interconnected Si3 N4 nanofibers is designed and fabricated via chemical vapor deposition (CVD). The resulting ultralight Si3 N4 NFS (2.69 mg cm-3 ) processes temperature-invariant reversible strechability (10% strain) and compressibility (50% strain), which enables its mechanical robustness under high-velocity airflow. The highly porous and aligned microstructure result in a Si3 N4 NFS with high filtration efficiency for PM2.5 (99.97%) and simultaneous low pressure drop (340 Pa, only less then 0.33% of atmospheric pressure) even under a high gas flow velocity (8.72 m s-1 ) at a high temperature (1000 °C). Furthermore, the Si3 N4 NFS air filter exhibits good long-term service ability and recyclability. Such Si3 N4 NFS with aligned microstructures for highly efficient gas filters provides new perspectives for the design and preparation of high-performance filtration materials.Surgical sealants are widely used to prevent seepage of fluids and liquids, promote hemostasis, and close incisions. Despite the remarkable progress the field of biomaterials has undergone, the clinical uses of surgical sealants are limited because of their short persistence time in vivo, toxicity, and high production costs. Here, the development of two complementary neat (solvent-free) prepolymers, PEG4 -PLGA-NHS and PEG4 -NH2 , that harden upon mixing to yield an elastic biodegradable sealant is presented. The mechanical and rheological properties and cross-linking rate can be controlled by varying the ratio between the two prepolymers. The tested sealants show a longer persistence time compared with fibrin glue, minimal cytotoxicity in vitro, and excellent biocompatibility in vivo. The neat, multiarmed approach demonstrated here improves the mechanical and biocompatibility properties and provides a promising tissue sealant solution for wound closure in future surgical procedures.Prevalence of child marriage has remained high in many parts of Africa despite its multisectoral adverse effect. As it is now being suggested to have intergeneration impact, we examined if marriage at or after 18th birthday is associated with the risk of anaemia among under-five children. https://www.selleckchem.com/products/mitoquinone-mesylate.html Cross-sectional data from Demographic and Health Surveys (DHS) conducted between 2010 and 2018 in 15 African countries as of August 2020 were used. Maternal age of marriage was defined as when they started living with their husband or partner. Children with haemoglobin level below 11.0 g/dl after adjustment for altitude were categorised to be anaemic. The study involved a multivariable logistic regression analysis of 17,033 children data born by women between the childbearing ages. About 65% of under-five children in Sub-Saharan Africa (SSA) were anaemic, ranging from 40% in Rwanda to 82% in Mali. Girl child marriage ranged from 40% in South Africa to 97% in Niger with an average of about 60%. We observed a significant reduction (20%) in the risk of anaemia among under-five children when their mothers married after at or after their 18th birthday. Country-specific analysis showed that increased risk of anaemia was strongly associated with early marriage in Côte d'Ivoire and Mozambique. This study contributed to the growing evidence that maternal age of marriage might have an intergenerational impact. Maternal marriage at or after their 18th birthday reduces the risk of anaemia among under-five children in Africa. Interventions aimed at tackling anaemia in Africa should capture and affect household socioeconomic risks and children's exposures. Tyrosine sulfation is a post-translational modification found on many surface receptors and plays an important role in cell-cell and cell-matrix interactions. However, tyrosine sulfation of therapeutic antibodies has only been reported very recently. Because of potential potency and immunogenicity concerns, tyrosine sulfation needs to be controlled during the manufacturing process. In this study, we explored methods to modulate antibody tyrosine sulfation during cell line development and upstream production process. We found that tyrosine sulfation levels were significantly different in various Chinese hamster ovary (CHO) cell lines due to differential expression of genes in the sulfation pathway including tyrosylprotein sulfotransferase 2 (TPST2) and the sulfation substrate transporter SLC35B2. We also screened chemical inhibitors to reduce tyrosine sulfation in CHO culture and found that sodium chlorate could significantly inhibit tyrosine sulfation while having minimal impact on cell growth and antibody production.