https://www.selleckchem.com/products/c25-140.html Further analysis showed that 26045 mRNAs formed 45,208 network-relationship pairs with 1770 microRNAs. In the current study, our work was the first to reveal that alterations of RNAs in the insula, as a core brain region of the neural circuits of interoception, were involved in the process of cocaine-induced CPP of adolescent mice. These findings enrich the biology and expand the molecular regulatory network related to adolescence CUD. They provided the possibility that some DEGs may be used as novel biomarkers for the diagnosis or evaluation of substance use disorder, and also provided clues for elucidating the neurobiological mechanism of substance use disorder.Over the past 25 years, chemotherapy regimens for osteosarcoma have failed to improve the 65-70% long-term survival rate. Radiation therapy is generally ineffective except for palliative care. We here investigated whether osteosarcoma can be sensitized to radiation therapy targeting specific molecules in osteosarcoma. Large-scale RNA sequencing analysis in osteosarcoma tissues and cell lines revealed that FGFR1 is the most frequently expressed receptor tyrosine kinase in osteosarcoma. Nuclear FGFR1 (nFGFR1) was observed by subcellular localization assays. The functional studies using a FGFR1IIIb antibody or small molecule FGFR1 inhibitors showed that nFGFR1, but not membrane-bound FGFR1, induces G2 cell-cycle checkpoint adaptation, cell survival and polyploidy following irradiation in osteosarcoma cells. Further, the activation of nFGFR1 induces Histone H3 phosphorylation at Ser 10 and c-jun/c-fos expression to contribute cell survival rendering radiation resistance. Furthermore, an in vivo mouse study revealed that radiation resistance can be reversed by the inhibition of nFGFR1. Our findings provide insights into the potential role of nFGFR1 to radiation resistance. Thus, we propose nFGFR1 could be a potential therapeutic target or a biomarker to determine