Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated.DOSY is a powerful spectroscopic NMR technique that resolves components in mixtures through the evaluation of different diffusion coefficients. The application of DOSY to dilute mixtures is hampered by the low signal to noise ratios (SNR), leading to long acquisition times. The use of PHIP may resolve this issue as long as reproducible signals are obtained in order to perform 2D experiments. Here we show that the use of hollow membranes and adequate gas flow produce constant polarization for a time-span that enables the acquisition of 2D experiments. A pressure gradient is evidenced by the presence of convection, which is accounted for by using a DPGSE sequence. The influence of J-coupling evolution during the sequence is studied both numerically and experimentally, to determine the optimum echo-time. The applicability of the method for samples with poor SNR is explored by setting the reaction rate to achieve a low intensity of polarized signals.Oxytocin (OT) from the hypothalamus is increased in several cardiorespiratory nuclei and systemically in response to a variety of stimuli and stressors, including hypoxia. Within the nucleus tractus solitarii (nTS), the first integration site for cardiorespiratory reflexes, OT enhances synaptic transmission, action potential (AP) discharge, and cardiac baroreflex gain. The hypoxic stressor obstructive sleep apnea, and its CIH animal model, elevates blood pressure and alters heart rate variability. The nTS receives sensory input from baroafferent neurons that originate in the nodose ganglia. Nodose neurons express the OT receptor (OTR) whose activation elevates intracellular calcium. However, the influence of OT on other ion channels, especially potassium channels important for neuronal activity during CIH, is less known. This study sought to determine the mechanism (s) by which OT modulates sensory afferent-nTS mediated reflexes normally and after CIH. https://www.selleckchem.com/products/bal-0028.html Nodose ganglia neurons from male Sprague-Dawley rats were examined after 10d CIH (6% O2 every 3 min) or their normoxic (21% O2) control. OTR mRNA and protein were identified in Norm and CIH ganglia and was similar between groups. To examine OTR function, APs and potassium currents (IK) were recorded in dissociated neurons. Compared to Norm, after CIH OT depolarized neurons and reduced current-induced AP discharge. After CIH OT also produced a greater reduction in IK that where tetraethylammonium-sensitive. These data demonstrate after CIH OT alters ionic currents in nodose ganglia cells to likely influence cardiorespiratory reflexes and overall function.Contextual factors influencing population health have received substantial attention, especially with regard to people's social networks and the roles of built environments in their activity spaces. Yet little health research has considered spatial and social contexts simultaneously, often because of a lack of existing data. This paper presents a tool for collecting relational data on social network and activity space that extends an existing map-based questionnaire with the addition of a name generator. We then illustrate how network analysis provides a useful framework for studying connections between social and spatial contexts using data collected in the Contrasted Urban settings for Healthy Aging research project.In Canada rural and northern communities, particularly Indigenous communities, face challenges disproportionate to their urban counterparts in accessing health care services. Existing health research on rural communities has tended to emphasize and reinforce the rural/urban dichotomy in access to and delivery of services, leaving the notion of "rural" as an under-interrogated concept. Drawing on a qualitative study of health care providers, community members, and Indigenous Elders, we explore Indigenous people's beliefs about vaccination to complicate notions of rurality in order to illuminate the ways in which space and settler colonialism both shape and limit choices around health care access.Leishmania mexicana can produce chronic infections leading to exhausted T cell phenotypes, mediated by PD-1/PD-L1. Little is known on mechanisms that induce these inhibitory molecules in chronic leishmaniasis. We analyzed factors that contribute to exhausted phenotypes in chronic L. mexicana infections of mice. Our results show that draining lymph node cells express enhanced levels of PD-1/PD-L1. T lymphocytes producing low cytokine levels were also found. L. mexicana infection of dendritic cells (DCs) produced elevated amounts of TNF and showed up-regulation of PD-L1 expression. We provide evidence that T cells of chronic L. mexicana infections in mice are functionally exhausted due to chronic TNF production, which leads to PD-L1 up-regulation in DCs. We conclude that TNF has a fundamental role in promoting T cell exhaustion during chronic L. mexicana infections, which contributes to the inability of T cells to proliferate and produce pro-inflammatory cytokines, thus favoring disease progression.