Vitiligo is an acquired pigmentary disorder resulting from selective destruction of melanocytes. Emerging studies have suggested that T helper cell 17 (Th17) is potentially implicated in vitiligo development and progression. It was recently discovered that metabotropic glutamate receptor 4 (mGluR4) can modulate Th17-mediated adaptive immunity. However, the influence of mGluR4 on melanogenesis of melanocytes has yet to be elucidated. In the present study, we primarily cultured mouse bone marrow-derived dendritic cells (BMDC) and then knocked down and over-expressed mGluR4 using transfection. Transduced BMDC were co-cultured with CD4+ T cells and the expression of Th17-related cytokines were measured. The morphology and melanogenesis of B16 cells were observed after being treated with co-culture medium of CD4+ T cells and transduced BMDC. We found that mGluR4 knockdown did not affect the co-stimulatory CD80 and CD86 upregulation after lipopolysaccharide stimulation but did increase the expression of Th17-related cytokines, and further down-regulated the expression of microphthalmia-associated transcription factor (MITF) and the downstream genes, decreased melanin production, and destroyed the morphology of B16 cells. Conversely, over-expression of mGluR4 reduced the expression of CD80 and CD86, suppressed the production of Th17-related cytokines, increased the expression of MITF, and did not destroy the morphology of B16 cells. Our study confirmed that mGluR4 modulated the Th17 cell polarization and resulted in the alteration of melanogenesis and morphology of B16 cells. Collectively, these findings suggest mGluR4 might be a potent target involved in the immune pathogenesis of vitiligo.Rab7, an important member of the Rab family, is closely related to autophagy, endocytosis, apoptosis, and tumor suppression but few studies have described its association with renal fibrosis. In the early stage, our group studied the effects of Rab7 on production and degradation of extracellular matrix in hypoxic renal tubular epithelial cells. Because cell culture in vitro is different from the environment in vivo, it is urgent to understand the effects in vivo. In our current study, we established a renal fibrosis model in Rab7-knock-in mice (prepared by CRISPR/Cas9 technology) and wild type (WT) C57BL/6 mice using unilateral ureteral obstruction (UUO). Seven and 14 days after UUO, the expression of the Rab7 protein in WT mice, as well as the autophagic activity, renal function, and the degree of renal fibrosis in WT and Rab7-knock-in mice were examined by blood biochemical assay, hematoxylin-eosin and Masson staining, immunohistochemistry, and western blotting. We found that the Rab7 expression in WT mice increased over time. Furthermore, the autophagic activity constantly increased in both groups, although it was higher in the Rab7-knock-in mice than in the WT mice at the same time point. Seven days after UUO, the degree of renal fibrosis was milder in the Rab7-knock-in mice than in the WT mice, but it became more severe 14 days after surgery. https://www.selleckchem.com/products/otx015.html Similar results were found for renal function. Therefore, Rab7 suppressed renal fibrosis in mice initially, but eventually it aggravated fibrosis with the activation of autophagy.The consumption of alcoholic beverages influences carbohydrate and lipid metabolism, although it is not yet clear whether metabolism during physical exercise at different intensities is also affected. This was the objective of the present study. Eight young and healthy volunteers performed a treadmill test to identify the running speed corresponding to a lactate concentration of 4 mM (S4mM). At least 48 h later, they were subjected to two experimental trials (non-alcohol or alcohol) in which they performed two 1-km running sessions at the following intensities 1) S4mM; 2) 15% above S4mM. In both trials, blood lactate, triglycerides, and glucose concentrations were measured before and after exercise. The acute alcohol intake increased triglycerides, but not lactate concentration under resting conditions. Interestingly, alcohol intake enhanced the exercise-induced increase in lactate concentration at the two intensities S4mM (non-alcohol 4.2±0.3 mM vs alcohol 4.8±0.9 mM; P=0.003) and 15% above S4mM trial (P=0.004). When volunteers ingested alcohol, triglycerides concentration remained increased after treadmill running (e.g., at S4mM - at rest; non-alcohol 0.2±0.5 mM vs alcohol 1.3±1.3 mM; P=0.048). In contrast, glucose concentration was not modified by either alcohol intake, exercise, or their combination. We concluded that an acute alcohol intake changed lactate and lipid metabolism without affecting blood glucose concentration. In addition, the increase in lactate concentration caused by alcohol was specifically observed when individuals exercised, whereas augmented triglycerides concentration was already observed before exercise and was sustained thereafter.α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the predominant mediators of glutamate-induced excitatory neurotransmission. It is widely accepted that AMPA receptors are critical for the generation and spread of epileptic seizure activity. Dysfunction of AMPA receptors as a causal factor in patients with intractable epilepsy results in neurotransmission failure. Brain-specific serine/threonine-protein kinase 1 (SAD-B), a serine-threonine kinase specifically expressed in the brain, has been shown to regulate AMPA receptor-mediated neurotransmission through a presynaptic mechanism. In cultured rat hippocampal neurons, the overexpression of SAD-B significantly increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Here, we showed that SAD-B downregulation exerted antiepileptic activity by regulating AMPA receptors in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We first used immunoblotting and immunohistochemistry analysis to demonstrate that SAD-B expression was increased in the epileptic rat brain. Subsequently, to explore the function of SAD-B in epilepsy, we used siRNA to knock down SAD-B protein and observed behavior after PTZ-induced seizures. We found that SAD-B downregulation attenuated seizure severity and susceptibility in the PTZ-induced epileptic model. Furthermore, we showed that the antiepileptic effect of SAD-B downregulation on PTZ-induced seizure was abolished by CNQX (an AMPA receptor inhibitor), suggesting that SAD-B modulated epileptic seizure by regulating AMPA receptors in the brain. Taken together, these findings suggest that SAD-B may be a potential and novel therapeutic target to limit epileptic seizures.