https://www.selleckchem.com/products/colivelin.html Today, one of the major concerns of environmental health is the purification of colored wastewater due to its high contamination. The present study focused on the synthesis and comprehensive characterization of environmentally friendly electrospinning membranes based on Chitosan cross linked with SBA-15 as a novel adsorbent for dye removal. Unlike most micro structured adsorbents, CTS-SBA-15 nanofibers with their special properties such as density, porosity, high surface-to-volume ratio, small and layered structures, etc. have a very high adsorption capacity to remove macromolecular pollution and microorganisms. Adsorbents were synthesized and functionalized, then produced by electrospinning instrument in the form of nanofibers sheets. In this study, FT-IR, XRD, FE-SEM, TEM, and tensile tests were employed to characterize the functional groups, surface morphology and pore diameter distribution of nanofibers. The influence of different analytical parameters was investigated to obtain the optimum conditions for the adsorption process. The optimum conditions for adsorption process obtained as following type of adsorbent CTS-SBA-15-NH2, pH 2, adsorbent dosage 0.05 g, initial concentration 60 and 40 mg/l and contact time 40 min, which followed from the Langmuir and Freundlich isotherms. So, it was found that CTS-SBA-15 can act as inexpensive and efficient adsorbent for the dye removal from the contaminated water.The addition of biomaterials such as Calcium Hydroxyapatite (cHAp) and incorporation of porosity into poly-ether-ether-ketone (PEEK) are effective ways to improve bone-implant interfaces and osseointegration of PEEK composite. Hence, the morphological effects of nanocomposite on surfaces biocompatibility of a newly fabricated composite of PEEK polymer and cHAp for a bone implant, using additive manufacturing (AM) were investigated. Fused deposition modeling (FDM) method and a surface treatment strategy were empl