https://www.selleckchem.com/products/ml141.html onitoring of diseases affecting key Baltic species in order to assess their relationship to population dynamics and their potential threat to humans. These infectious agents are valuable indicators of host ecology and can act as bioindicators of distribution, migration, diet and behaviour of marine mammals and birds, as well as of climate change and changes in food web dynamics. In addition, infectious diseases are linked to pollutant exposure, overexploitation, immune suppression and subsequent inflammatory disease. Ultimately, these diseases affect the health of the entire ecosystem and, consequently, ecosystem function and services. As global warming is continuously increasing, the impact of global change on infectious disease patterns is important to monitor in Baltic key species in the future. Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m-3 and an average inhalable aerobic bacterial concentration of 73 CFU∙m-3, with no significant difference (P > 0.05) among the three wards. isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive