05). Kaplan-Meier curves were compared using the log-rank test. The results indicated lower pain scores, better survival curves with a lower number of patients requiring rescue analgesia, and lower peripheral sensitization, in the GLKM group than in the GLK group. It was concluded that the coadministration of maropitant with ketamine and lidocaine had an adjuvant effect with minimal cardiorespiratory effects and effective analgesia, improving pain management and patient comfort.Arrhythmia is one of the most common abnormal symptoms that can threaten human life. In order to distinguish arrhythmia more accurately, the classification strategy of the multifeature combination and Stacking-DWKNN algorithm is proposed in this paper. The method consists of four modules. In the preprocessing module, the signal is denoised and segmented. Then, multiple different features are extracted based on single heartbeat morphology, P length, QRS length, T length, PR interval, ST segment, QT interval, RR interval, R amplitude, and T amplitude. Subsequently, the features are combined and normalized, and the effect of different feature combinations on heartbeat classification is analyzed to select the optimal feature combination. Finally, the four types of normal and abnormal heartbeats were identified using the Stacking-DWKNN algorithm. This method is performed on the MIT-BIH arrhythmia database. The result shows a sensitivity of 89.42% and a positive predictive value of 94.90% of S-type beats and a sensitivity of 97.21% and a positive predictive value of 97.07% of V-type beats. The obtained average accuracy is 99.01%. Compared to other models with the same features, this method can improve accuracy and has a higher positive predictive value and sensitivity, which is important for clinical decision-making.In the present day, there are many diseases which need to be identified at their early stages to start relevant treatments. If not, they could be uncurable and deadly. Due to this reason, there is a need of analysing complex medical data, medical reports, and medical images at a lesser time but with greater accuracy. There are even some instances where certain abnormalities cannot be directly recognized by humans. In healthcare for computational decision making, machine learning approaches are being used in these types of situations where a crucial data analysis needs to be performed on medical data to reveal hidden relationships or abnormalities which are not visible to humans. Implementing algorithms to perform such tasks itself is difficult, but what makes it even more challenging is to increase the accuracy of the algorithm while decreasing the required time for the algorithm to execute. In the early days, processing of large amount of medical data was an important task which resulted in machine learning rom the field of artificial intelligence.Heart angiography is a test in which the concerned medical specialist identifies the abnormality in heart vessels. This type of diagnosis takes a lot of time by the concerned physician. In our proposed method, we segmented the interested regions of heart vessels and then classified. Segmentation and classification of heart angiography provides significant information for the physician as well as patient. Contradictorily, in the mention domain of heart angiography, the charge is prone to error, phase overwhelming, and thought-provoking task for the physician (heart specialist). An automatic segmentation and classification of heart blood vessels descriptions can improve the truthfulness and speed up the finding of heart illnesses. In this work, we recommend a computer-assisted conclusion arrangement for the localization of human heart blood vessels within heart angiographic imageries by using multiclass ensemble classification mechanism. In the proposed work, the heart blood vessels will be first segmented, and the various features according to accuracy have been extracted. Low-level features such as texture, statistical, and geometrical features were extracted in human heart blood vessels. At last, in the proposed framework, heart blood vessels have been categorized in their four respective classes including normal, block, narrow, and blood flow-reduced vessels. The proposed approach has achieved best result which provides very useful, easy, accurate, and time-saving environment to cardiologists for the diagnosis of heart-related diseases.Digital divide has been a major obstacle for mobile health services for the elderly in developing countries; to assess the potential solution to narrow digital divide among the elderly, we use data from the China Health and Retirement Longitudinal Study (CHARLS) and test for a causal role of social capital in digital access among elderly individuals in China. To handle endogenous problems associated with social capital, we introduce instrumental variable (IV) estimates in our models. Our data analysis shows that social capital facilitates increased digital access. We distinguish between two digital access patterns, an infrastructure pattern and a personal device pattern, and find that the causal effect of social capital is determined by the personal device pattern. Therefore, since family members and relatives increase digital access among elderly people, we propose a family-centered mobile health policy in developing countries.In healthcare applications, deep learning is a highly valuable tool. It extracts features from raw data to save time and effort for health practitioners. A deep learning model is capable of learning and extracting the features from raw data by itself without any external intervention. On the other hand, shallow learning feature extraction techniques depend on user experience in selecting a powerful feature extraction algorithm. In this article, we proposed a multistage model that is based on the spectrogram of biosignal. https://www.selleckchem.com/products/ziritaxestat.html The proposed model provides an appropriate representation of the input raw biosignal that boosts the accuracy of training and testing dataset. In the next stage, smaller datasets are augmented as larger data sets to enhance the accuracy of the classification for biosignal datasets. After that, the augmented dataset is represented in the TensorFlow that provides more services and functionalities, which give more flexibility. The proposed model was compared with different approaches. The results show that the proposed approach is better in terms of testing and training accuracy.