cristatus. We observed a decrease in connectivity following a decrease in patch suitability. Our results highlight the important areas for newt habitat connectivity within the study area, and define those potentially threatened by climate warming. We provide information for prioritizing sites for acquisition, protection or restoration, and to advise landscape policies. Our framework is a useful and easily reproducible way to combine global climate requirements of the species with detailed information on species habitats and occurrence when available.Iron is one of the most abundant elements on earth and essential for life. However, Fe3+ ions are rather insoluble and microorganisms such as fungi may use siderophores as strong chelators for uptake. In addition, free cytoplasmic iron is rather toxic and intracellular siderophores are used to control the toxicity. Siderophores are also important for iron storage. We studied two siderophore systems in the plant necrotrophic fungus Alternaria alternata and show that the non-ribosomal peptide synthase, Nps2, is required for the biosynthesis of intracellular ferricrocin, whereas Nps6 is needed for the formation of extracellular coprogen and coprogen B. Whereas nps2 was dispensable for growth on iron-depleted medium, nps6 was essential under those conditions. https://www.selleckchem.com/products/idf-11774.html nps2 deletion caused an increase in spore formation and reduced pathogenicity on tomato. Our results suggest that A. alternata employs an external and an internal siderophore system to adapt to low iron conditions.There is concern among residents that their children might suffer from thyroid cancer in the near future after the Fukushima Daiichi nuclear power station (FDNPS) accident. However, the demographic and geographical distribution of thyroid equivalent doses was not thoroughly evaluated, and direct thyroid measurements were conducted only for 1,200 children, whose individual thyroid doses were assessed on the basis of those measurements accounting for the dynamics of radioiodine intake. We conducted hierarchical clustering analyses of 100 or 300 randomly sampled behavioural questionnaire sheets of children from each of seven municipalities in the evacuation area to reconstruct evacuation scenarios associated with high or low exposures to plumes. In total 896 behaviour records in the Fukushima Health Management Survey were analysed to estimate thyroid equivalent doses via inhalation, using a spatiotemporal radionuclides concentration database constructed by atmospheric dispersion simulations. After a decontamination factor for sheltering and a modifying factor for the dose coefficient-to reflect lower iodine uptake rate in Japanese-were applied, estimated thyroid equivalent doses were close to those estimated from direct thyroid measurement. The median and 95th percentile of thyroid equivalent doses of 1-year-old children ranged from 0.6 to 16 mSv and from 7.5 to 30 mSv, respectively. These results are useful for future epidemiological studies of thyroid cancer in Fukushima.Composite materials have become widely used in engineering applications, in order to reduce the overall weight of structures while retaining their required strength. In this work, a composite material consisting of discontinuous glass fibers in a polypropylene matrix is studied at the microstructural level through coupled experiments and simulations, in order to uncover the mechanisms that cause damage to initiate in the microstructure under macroscopic tension. Specifically, we show how hydrostatic stresses in the matrix can be used as a metric to explain and predict the exact location of microvoid nucleation that occurs during damage initiation within the composite's microstructure. Furthermore, this work provides evidence that hydrostatic stresses in the matrix can lead to coupled microvoid nucleation and early fiber breakage, and that small fragments of fibers can play an important role in the process of microvoid nucleation. These results significantly improve our understanding of the mechanics that drive the initiation of damage in the complex microstructures of discontinuous fiber reinforced thermoplastics, while also allowing scientists and engineers to predict the microstructural damage behavior of these composites at sub-fiber resolution and with high accuracy.Sandy sediments cover 50-60% of the continental shelves and are highly efficient bioreactors in which organic carbon is remineralized and inorganic nitrogen is reduced to N2. As such they seem to play an important role, buffering the open ocean from anthropogenic nitrogen inputs and likely remineralizing the vast amounts of organic matter formed in the highly productive surface waters. To date however, little is known about the interrelation between porewater transport, grain properties and microbial colonization and the consequences for remineralization rates in sandy sediments. To constrain the effect of theses factors on remineralization in silicate sands, we incubated North Sea sediments in flow-through reactors after separating into five different grain size fractions. Bulk sediment and sediment grain properties were measured along with microbial colonization and cell abundances, oxygen consumption and denitrification rates. Volumetric oxygen consumption ranged from 14 to 77 µmol O2 l-1 h-1 while nitrogen-loss via denitrification was between 3.7 and 8.4 µmol N l-1 h-1. Oxygen consumption and denitrification rates were linearly correlated to the microbial cell abundances, which ranged from 2.9 to 5.4·108 cells cm-3. We found, that cell abundance and consumption rates in sandy sediments are influenced (i) by the surface area available for microbial colonization and (ii) by the exposure of these surfaces to the solute-supplying porewater flow. While protective structures such as cracks and depressions promote microbial colonization, the oxygen demand is only met by good ventilation of these structures, which is supported by a high sphericity of the grains. Based on our results, spherical sand grains with small depressions, i.e. golf ball like structures, provide the optimal supporting mineral structure for microorganisms on continental shelves.