https://www.selleckchem.com/products/favipiravir-t-705.html Three-dimensional (3D) in vitro systems closely resemble tissue microenvironments and provide predictive models for studying cytotoxic drug responses. The ability to capture the kinetic profiles of such responses in a dynamic and noninvasive way can further advance the utility of 3D cell cultures. Here, we describe the use of a luminescent lactate dehydrogenase (LDH) toxicity assay for monitoring time- and dose-dependent effects of drug treatment in 3D cancer spheroids. HCT116 spheroids formed in 96-well ultralow attachment plates were treated with increasing drug concentrations. Medium samples were collected at different timepoints, frozen, stored, and analyzed at the end of experiments using the luminescent LDH-Glo™ Assay. High assay sensitivity and low volume sampling enabled drug-induced toxicity profiling in a time- and dose-dependent manner.Anoikis is a type of programmed cell death triggered by the loss of cellular interaction with the extracellular matrix (ECM) and culminates in the activation of caspases. Specific interaction between cellular receptors such as integrins and the ECM is important to maintain cellular homeostasis in normal tissues through multiple cascades. This interaction provides not only physical attachment, but more importantly, vital interaction with the actin cytoskeleton and growth factors. Normal epithelial and endothelial cells require this interaction with ECM to survive. In cancer, the acquisition of anoikis resistance is a hallmark of malignant transformation and is required in the process of metastasis formation. As such, strategies to inhibit and/or counteract anoikis resistance are important in controlling cancer progression. In this chapter, we describe the method for detecting anoikis using cell viability and caspase activity assays.This chapter describes a real-time, bioluminescent apoptosis assay technique, which circumvents the well-documented "timing condundrum"