The result showed that NiO/SnO2 nanoparticles-decorated fibers with an average size of 180-260 nm in diameter and average length of fibers was about 1.5μm. The composite based heterojunction of NiO/SnO2 nanoparticles-decorated fibers enhanced the adsorption of oxygen molecules, which show fast response, good selectivity and quick recovery speed against ethanol gas at an optimal temperature of about 160 ºC. The maximum sensitivity response of sensor-based composites NiO/SnO2 nanoparticles-decorated fibers were 23.87 towards 100 ppm ethanol gas at low temperature of 160 ºC, which was about 7.2 times superior to that of pure SnO2 nanofibers. The superior gas sensing demonstration of composites based on NiO/SnO2 nanoparticles-decorated fibers might be attributed to the catalytic with small size effect of NiO nanoparticles on smooth SnO2 nanofibers and p/n heterojunction effects between NiO and SnO2 heterostructures.Collective cell migration refers to the movement of groups of cells and collective cell behavior and relies on cell-cell communication and cell-environment interactions. Collective cell migration plays a fundamental role in many aspects of cell biology and pathology. Current protocols for studying collective cell migration either use destructive methods or are not convenient for liquid handling. Here we present a novel 3D printed insert-array and a 3D-coculture-array for collective cell migration study in high-throughput. The fabricated insert-array is comprised of 96-cylinder shaped inserts which can be placed in each well of a 96-well plate generating watertight contact with the bottom of each well. The insert-array has high manufacturing tolerance, and the coefficient of variations of the insert diameter and circularity are 0.67% and 0.03%, respectively. Each insert generates a circular cell-free area within the well without cell damage and provides convenient access for both manual and robotic liquid handect high-throughput assay. In summary, our newly developed insert-array and 3D-coculture-array provide a versatile platform to study collective cell migration in high-throughput as well as the molecular and cellular influences upon it.Both direct and indirect evidence demonstrate a central role for the cAMP-dependent protein kinase (PKA) signaling pathway in the regulation of energy balance and metabolism across multiple systems. However, the ubiquitous pattern of PKA expression across cell types poses a challenge in pinpointing its tissue-specific regulatory functions and further characterizing its many downstream effects in certain organs or cells. Mouse models of PKA deficiency and over-expression and studies in living cells have helped clarify PKA function in adipose tissue (AT), liver, adrenal, pancreas, and specific brain nuclei, as they pertain to energy balance and metabolic dysregulation. Limited studies in humans suggest differential regulation of PKA in AT of obese compared to lean individuals and an overall dysregulation of PKA signaling in obesity. Despite its complexity, under normal physiologic conditions, the PKA system is tightly regulated by changes in cAMP concentrations upstream via adenylate cyclase and downstream by phosphodiesterase-mediated cAMP degradation to AMP and by changes in PKA holoenzyme stability. Adjustments in the PKA system appear to be important to the development and maintenance of the obese state and its associated metabolic perturbations. In this review we discuss the important role of PKA in obesity and its involvement in resistance to obesity, through studies in humans and in mouse models, with a focus on the regulation of PKA in energy expenditure, intake behavior, and lipid and glucose metabolism.Adropin plays a role in the maintenance of energy homeostasis, insulin resistance prevention, and impaired glucose tolerance. However, the molecular mechanisms by which adropin affects hepatic glucose and lipid metabolism in vitro are not entirely understood. This study intended to examine the roles and underlying mechanisms of adropin in glucose and lipid metabolism in Nile tilapia. https://www.selleckchem.com/products/otx015.html In primary cultured tilapia hepatocytes, adropin significantly attenuated oleic acid (OA)-induced glucose output and reduced the activities and mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), which are involved in gluconeogenesis. In contrast, adropin facilitated glucose uptake activity via glucose transporter 1 (Glut1) upregulation in OA-treated hepatocytes. One-week of adropin treatment reduced the hepatic total lipid accumulation in OA-fed tilapia without changes in body weight. Subsequent studies revealed that adropin suppressed OA-induced intracellular triglyceride accumulation and decreased the expression of genes and proteins involved in lipid metabolisms such as sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase α (ACCα) and CD36, but upregulated peroxisome proliferator-activated receptor α (PPARα) levels. In parallel studies, however, adropin had no detectable effects on fatty acid-binding protein 4 (Fabp4) and carnitine palmitoyltransferase 1α (Cpt1α) mRNA expression. Furthermore, adropin treatment dose-dependently increased the phosphorylation level of AMP-activated protein kinase (AMPK). Suppression of AMPK by compound C or AMPKα1 siRNA blocked adropin-induced decreases in the mature form of SREBP-1c expression, glucose output, and intracellular triglyceride content in OA-treated hepatocytes. These findings suggest that teleost adropin could suppress hepatic gluconeogenesis and triglyceride accumulation via a mechanism dependent on AMPK signalling.Progesterone and progesterone receptors (PR) have a storied albeit controversial history in breast cancers. As endocrine therapies for breast cancer progressed through the twentieth century from oophorectomy to antiestrogens, it was recognized in the 1970s that the presence of estrogen receptors (ER) alone could not efficiently predict treatment responses. PR, an estrogen regulated protein, became the first prognostic and predictive marker of response to endocrine therapies. It remains today as the gold standard for predicting the existence of functional, targetable ER in breast malignancies. PRs were subsequently identified as highly structured transcription factors that regulate diverse physiological processes in breast cancer cells. In the early 2000s, the somewhat surprising finding that prolonged use of synthetic progestin-containing menopausal hormone therapies was associated with increased breast cancer incidence raised new questions about the role of PR in 'tumorigenesis'. Most recently, PR have been linked to expansion of cancer stem cells that are postulated to be the principal cells reactivated in occult or dormant disease.