Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.Atomically thin van der Waals materials stacked with an interlayer twist have proven to be an excellent platform toward achieving gate-tunable correlated phenomena linked to the formation of flat electronic bands. In this work we demonstrate the formation of emergent correlated phases in multilayer rhombohedral graphene--a simple material that also exhibits a flat electronic band edge but without the need of having a moiré superlattice induced by twisted van der Waals layers. We show that two layers of bilayer graphene that are twisted by an arbitrary tiny angle host large (micrometer-scale) regions of uniform rhombohedral four-layer (ABCA) graphene that can be independently studied. Scanning tunneling spectroscopy reveals that ABCA graphene hosts an unprecedentedly sharp van Hove singularity of 3-5-meV half-width. We demonstrate that when this van Hove singularity straddles the Fermi level, a correlated many-body gap emerges with peak-to-peak value of 9.5 meV at charge neutrality. Mean-field theoretical calculations for model with short-ranged interactions indicate that two primary candidates for the appearance of this broken symmetry state are a charge-transfer excitonic insulator and a ferrimagnet. Finally, we show that ABCA graphene hosts surface topological helical edge states at natural interfaces with ABAB graphene which can be turned on and off with gate voltage, implying that small-angle twisted double-bilayer graphene is an ideal programmable topological quantum material.Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.What is the relationship between money and well-being? Research distinguishes between two forms of well-being people's feelings during the moments of life (experienced well-being) and people's evaluation of their lives when they pause and reflect (evaluative well-being). Drawing on 1,725,994 experience-sampling reports from 33,391 employed US adults, the present results show that both experienced and evaluative well-being increased linearly with log(income), with an equally steep slope for higher earners as for lower earners. There was no evidence for an experienced well-being plateau above $75,000/y, contrary to some influential past research. There was also no evidence of an income threshold at which experienced and evaluative well-being diverged, suggesting that higher incomes are associated with both feeling better day-to-day and being more satisfied with life overall.T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.Human taste threshold measurements often are used to infer tastant receptor functionality. https://www.selleckchem.com/products/mps1-in-6-compound-9-.html However, taste thresholds can be influenced by receptor-independent variables. Examination of the full range of taste-active concentrations by taste discrimination has been hampered by logistics of testing multiple concentrations in replicate with human subjects. We developed an automated rapid throughput operant methodology for taste discrimination and applied it to concentration-response analysis of human taste. Tastant solutions (200 µl) drawn from a 96-well plate and self-administered to the tongue served as discriminative stimuli for money-reinforced responses on a touch-sensitive display. Robust concentration-response functions for "basic taste" stimuli were established, with particular focus on agonists of the taste 1 receptor member 2-taste 1 receptor member 3 heterodimer receptor (TAS1R2/R3). With a training cue of 100 mM sucrose, EC50 values of 56, 79, and 310 µM and 40 mM were obtained for rebaudioside A, sucthodology that enables rigorous concentration-response analysis of human taste discrimination and its use toward quantitative characterization of tastant agonist activity. Our data suggest that taste discrimination concentration-response functions are a more reliable reflection of underlying receptor activity than threshold measures obtained at the lowest detectable tastant concentrations.