8 vs 115.9 nM; p = 0.25), and these patients also trended toward higher hydrogen peroxide than healthy participants (mean 172.8 vs 115.5 nM; p = 0.14). This pilot study demonstrates the ability of the newly developed assay and device to measure exhaled breath condensate hydrogen peroxide in asthma patients and healthy participants. The trends observed in this study are in agreement with previous literature and warrant further investigation of using this system to measure exhaled breath condensate hydrogen peroxide for monitoring oxidative stress in asthma.Titanium dioxide (TiO2) particles are a common ingredient in food, providing the bright white color for many candies, gums, and frostings. While ingestion of these materials has been examined previously, few studies have examined the effect of these particles on lung cells. Inhalation is an important exposure pathway for workers processing these foods and, more recently, home users who purchase these particles directly. We examine the response of lung cells to food-grade TiO2 particles using a combination of fluorescence microscopy and RT-PCR. These experiments show that TiO2 particles generate intracellular reactive oxygen species, specifically superoxide, and alter expression of two epigenetic modifiers, histone deacetylase 9 (HDAC9) and HDAC10. We use a protein corona formed from superoxide dismutase (SOD), an enzyme that scavenges superoxide, to probe the relationship between TiO2 particles and superoxide generation. These experiments show that low, non-cytotoxic, concentrations of food-grade TiO2 particles lead to cellular responses, including altering two enzymes responsible for epigenetic modifications. This production of superoxide and change in epigenetic modifiers could affect human health following inhalation. We expect this research will motivate future in vivo experiments examining the pulmonary response to food-grade TiO2 particles.Dysbiosis of gut microbiota may lead to a range of diseases including neurological disorders. Thus, it is hypothesized that regulation of the intestinal microbiota may prevent or treat epilepsy. The purpose of this systematic review is to evaluate the evidence investigating the relationship between gut microbiota and epilepsy and possible interventions. A systematic review of the literature was done on four databases (PubMed, Scopus, EMBASE, and Web of Science). Study selection was restricted to original research articles while following the PRISMA guidelines. Six studies were selected. These studies cohesively support the interaction between gut microbiota and epileptic seizures. Gut microbiota analysis identified increases in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria with decreases in Bacteroidetes and Actinobacteria in epileptic patients. Ketogenic diet, probiotics, and fecal microbiota transplantation (FMT) improved the dysbiosis of the gut microbiota and seizure activity. However, the studies either had a small sample size, lack of subject variability, or short study or follow-up period, which may question their reliability. Nevertheless, these limited studies conclusively suggest that gut microbiota diversity and dysbiosis may be involved in the pathology of epilepsy. Future studies providing more reliable and in depth insight into the gut microbial community will spark promising alternative therapies to current epilepsy treatment.Exhibiting superior safety features and low costs, solid-state sodium (Na)-ion batteries have been proposed as an attractive candidate for energy storage. However, the poor rate capability of solid-state batteries has limited their applications. In this work, an all-solid-state Na-ion battery is fabricated, delivering an unprecedented rate capability (60% capacity retention at a C-rate of 100 C with an areal loading of 1.5 mg cm-2), which far exceeds other reports so far. More importantly, it is further demonstrated that instead of the Na-ion conductivity of the solid electrolyte, the rate-limiting factors are determined to be charge-transfer resistance at electrode/solid electrolyte interfaces and lack of percolation pathways in the electrode, which can be optimized by tuning the electrode design and testing protocols.Development of a robust self-cleaning oil-repellent surface in a cost-efficient and green manner is highly desirable, yet still difficult to realize. Herein, we develop a poly(vinyl alcohol) (denoted as PVA) composite hydrogel on which the oily contaminations can be removed efficiently by water merely. Owing to its high affinity to water and resistance to oils, the water-wetted hydrogel establishes a slippery oil-repellent state in air, displays underwater superoleophobicity with ultralow adhesion to all probe oils, and blocks oil from permeating when immersed into an oil surrounding. Oily contaminations on the PVA hydrogel surface are removed just by titling or water immersion, with no oil residue left behind. This enhanced oil repellency was retained after hand-bending, water-jetting, and even 1000 cycles of sand abrasion, demonstrating mechanical robustness. Application of the PVA hydrogel-coated copper mesh is demonstrated to separate oil/water and oil/oil mixtures, with separation efficiency being greater than 98%.Two distinct advantages of nonaqueous redox flow batteries (RFBs) are the feasibility of building a high cell voltage (without a constraint of the water-splitting potential) and the operability at low temperatures (without a concern of freezing below 0 °C). However, electrochemically active organic redox couples are usually selectively soluble in specific nonaqueous solvents, and their solubility is relatively low (in contrast to that in aqueous solutions). The selective and low solubility of redox couples seriously constrict the practical energy density of nonaqueous RFBs. https://www.selleckchem.com/products/dl-alanine.html Herein, we present a hybrid nonaqueous RFB with a solid zinc anode and a liquid (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) cathode. Toward accessing a high solubility of the TEMPO cathode and to sufficiently accommodate the discharge products of a Zn anode, asymmetric electrolyte solvents, viz., propylene carbonate (PC) and acetonitrile (ACN), have, respectively, been employed at the cathode and anode. To prevent a mixing of the two asymmetric electrolyte solvents, a NASICON-type Na+-ion conductive solid-state electrolyte (SSE, Na3Zr2Si2PO12) is employed to serve as a mediator-ion separator.