https://www.selleckchem.com/products/rin1.html The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems.Circulating tumor DNA (ctDNA) has been suggested as a biomarker in non-small cell lung cancer. The optimal target for measuring ctDNA has not yet been established. This study aimed to investigate methylated Homeobox A9 (meth-HOXA9) as an approach to detect ctDNA in advanced lung adenocarcinoma and compare it with mutated Kirsten rat sarcoma viral oncogene homolog (mut-KRAS) in order to determine the mutual agreement. DNA was purified from formalin-fixed, paraffin-embedded non-malignant lung tissue and lung adenocarcinoma tissue, and plasma from healthy donors and lung adenocarcinoma patients, respectively. KRAS mutations in tumor tissue were identified by next-generation sequencing and q