https://www.selleckchem.com/products/r428.html 01 g.mL-1. The ion adsorption equilibrium data were well-fitted by the Langmuir isotherm with a maximum monolayer capacity of 510.2 mg/g. Kinetic researches disclosed that the adsorption procedure was defined by a pseudo-second-order model. Thermodynamic researches revealed that the enthalpy change (ΔH0) as well as Gibbs free energy change (ΔG0) of the adsorption procedure was negative, indicating that the adsorption procedure was spontaneous and exothermic. After three cycles, the removal efficiency was still 90.18%. Therefore, in conclusion, we believe that the CAGs is a good adsorption material for organic dyes due to its good adsorption and recyclable properties.The EphA2 tyrosine kinase receptor is highly expressed in several types of solid tumors. In our recent studies, we targeted EphA2 in pancreatic cancer with agonistic agents and demonstrated that suppression of EphA2 significantly reduced cancer-cell migration in cell-based assays. In the present study, we focused on targeting EphA2 in prostate cancer. While not all prostate cancers express EphA2, we showed that enzalutamide induced EphA2 expression in prostate cancer cells and in a patient-derived xenograft (PDX) animal model, which provides further impetus to target EphA2 in prostate cancer. Western blot studies showed that agonistic dimeric synthetic (135H12) and natural (ephrinA1-Fc) ligands effectively degraded EphA2 receptor in the prostate cancer cell line PC-3. The agents also delayed cell migration of prostate cancer (PC-3) cells, while an in vivo PC-3 orthotopic metastatic nude-mouse model also revealed that administration of ephrinA1-Fc or 135H12 strongly reduced metastases. The present study further validates EphA2 as an important target in metastatic prostate cancer treatment. Our results should incentivize further efforts aimed at developing potent and effective EphA2 synthetic agonistic agents for the treatment of EphA2-driven aggressive metast