eHealth interventions aimed at improving physical activity (PA) can reach large populations with few resources and demands on the population as opposed to centre-based interventions. Active Plus is a proven effective computer-tailored PA intervention for the older adult population focusing on PA in daily life. This manuscript describes the effects of the Active Plus intervention (N = 260) on PA of older adults with chronic illnesses (OACI), compared to a waiting list control group (N = 325). It was part of a larger randomized controlled trial (RCT) on the effects of the Active Plus intervention on cognitive functioning. OACI (≥65 years) with at least one chronic illness were allocated to one of the conditions. Intervention group participants received PA advice. https://www.selleckchem.com/products/pd-1-pd-l1-inhibitor-3.html Baseline and follow-up measurements were assessed after 6 and 12 months. Intervention effects on objectively measured light PA (LPA) and moderate-to-vigorous PA (MVPA) min/week were analysed with multilevel linear mixed-effects models adjusted for the tion may yet be not effective enough by itself in OACI. A blended approach, where this eHealth intervention and face-to-face contact are combined, is advised to improve the effects of Active Plus on PA in this target group.Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In this study, we demonstrate that EGCG significantly inhibits the growth of 4T1 breast cancer cells in vitro and in vivo. EGCG ameliorated immunosuppression by significantly decreasing the accumulation of myeloid-derived suppressor cells (MDSCs) and increasing the proportions of CD4+ and CD8+ T cells in spleen and tumor sites in 4T1 breast tumor-bearing mice. Surprisingly, a low dose of EGCG (0.5-5 μg/mL) effectively reduced the cell viability and increased the apoptosis rate of MDSCs in vitro. EGCG down-regulated the canonical pathways in MDSCs, mainly through the Arg-1/iNOS/Nox2/NF-κB/STAT3 signaling pathway. Moreover, transcriptomic analysis suggested that EGCG also affected the non-canonical pathways in MDSCs, such as ECM-receptor interaction and focal adhesion. qRT-PCR further validated that EGCG restored nine key genes in MDSCs, including Cxcl3, Vcan, Col4a1, Col8a1, Oasl2, Mmp12, Met, Itsnl and Acot1. Our results provide new insight into the mechanism of EGCG-associated key pathways/genes in MDSCs in the murine breast tumor model.In this paper two Nb-silicide-based alloys with nominal compositions (at.%) Nb-12Ti-18Si-6Ta-2.5W-1Hf-2Sn-2Ge (JZ1) and Nb-12Ti-18Si-6Ta-2.5W-1Hf-5Sn-5Ge (JZ2) were studied. The alloys were designed using the alloy design methodology NICE to meet specific research objectives. The cast microstructures of both alloys were sensitive to solidification conditions. There was macro-segregation of Si in JZ1 and JZ2. In both alloys the βNb5Si3 was the primary phase and the Nbss was stable. The A15-Nb3X (X = Ge,Si,Sn) was stable only in JZ2. The Nbss+βNb5Si3 eutectic in both alloys was not stable as was the Nb3Si silicide that formed only in JZ1. At 800 °C both alloys followed linear oxidation kinetics and were vulnerable to pesting. At 1200 °C both alloys exhibited parabolic oxidation kinetics in the early stages and linear kinetics at longer times. The adhesion of the scale that formed on JZ2 at 1200 °C and consisted of Nb and Ti-rich oxides, silica and HfO2 was better than that of JZ1. The microstructure of JZ2 was contaminated by oxygen to a depth of about 200 μm. There was no Ge or Sn present in the scale. The substrate below the scale was richer in Ge and Sn where the NbGe2, Nb5(Si1-xGex)3, W-rich Nb5(Si1-xGex)3, and A15-Nb3X compounds (X = Ge,Si,Sn) were formed in JZ2. The better oxidation behavior of JZ2 compared with JZ1 correlated well with the decrease in VEC and increase in δ parameter values, in agreement with NICE. For both alloys the experimental data for Si macrosegregation, vol.% Nbss, chemical composition of Nbss and Nb5Si3, and weight gains at 800 and 1200 °C was compared with the calculations (predictions) of NICE. The agreement was very good. The calculated creep rates of both alloys at 1200 °C and 170 MPa were lower than that of the Ni-based superalloy CMSX-4 for the same conditions but higher than 10-7 s-1.The aim of this study was to develop a database to identify dietary amino acid intake levels, and to determine whether any amino acid groups were independently correlated with skeletal muscle mass index (SMI). We used data from the Korea National Health and Nutrition Examination Survey 2008-2011, and a total of 3292 participants aged 50-64 years were included in the analysis. Dietary data were obtained using the 24 h recall method. Data regarding dietary amino acid intake was assessed using the computer-aided nutritional analysis program 4.0 published by the Korean Nutrition Society. Multivariate linear regression analysis was used to identify independent correlates of SMI. The major food group that contributed the highest essential amino acid intake was grain and grain products (histidine 25.5%, isoleucine 43.9%, leucine 44.2%, methionine 31.0%, phenylalanine 44.8%, tryptophan 26.4%, and valine 50.8%). Higher SMI was independently associated with sex (men), lower age and body mass index, higher levels of physical activity, and a higher intake of energy and branched-chain amino acids. These results are expected to be used as a basis for developing dietary amino acid intake guidelines for Koreans.A new method for the nuclear magnetic resonance (NMR) surface relaxivity calibration in hydrated cement samples is proposed. This method relies on a combined analysis of 28-d hydrated tricalcium silicate samples by scanning electron microscopy (SEM) image analysis and 1H-time-domain (TD)-NMR relaxometry. Pore surface and volume data for interhydrate pores are obtained from high resolution SEM images on surfaces obtained by argon broad ion beam sectioning. These data are combined with T2 relaxation times from 1H-TD-NMR to calculate the systems surface relaxivity according to the fast exchange model of relaxation. This new method is compared to an alternative method that employs sequential drying to calibrate the systems surface relaxivity.