https://www.selleckchem.com/btk.html Background Hand hygiene may mitigate the spread of COVID-19 in community settings; however, empirical evidence is limited. Given reports of similar transmission mechanisms for COVID-19 and seasonal coronaviruses, we investigated whether hand hygiene impacted the risk of acquiring seasonal coronavirus infections. Methods Data were drawn from three successive winter cohorts (2006-2009) of the England-wide Flu Watch study. Participants ( n=1633) provided baseline estimates of hand hygiene behaviour. Coronavirus infections were identified from nasal swabs using RT-PCR. Poisson mixed models estimated the effect of hand hygiene on personal risk of coronavirus illness, both unadjusted and adjusted for confounding by age and healthcare worker status. Results Moderate-frequency handwashing (6-10 times per day) predicted a lower personal risk of coronavirus infection (adjusted incidence rate ratio (aIRR) =0.64, p=0.04). There was no evidence for a dose-response effect of handwashing, with results for higher levels of hand hygiene (>10 times per day) not significant (aIRR =0.83, p=0.42). Conclusions This is the first empirical evidence that regular handwashing can reduce personal risk of acquiring seasonal coronavirus infection. These findings support clear public health messaging around the protective effects of hand washing in the context of the current COVID-19 pandemic.The advent of large-scale fluorescence and electronic microscopy techniques along with maturing image analysis is giving life sciences a deluge of geometrical objects in 2D/3D(+t) to deal with. These objects take the form of large scale, localised, precise, single cell, quantitative data such as cells' positions, shapes, trajectories or lineages, axon traces in whole brains atlases or varied intracellular protein localisations, often in multiple experimental conditions. The data mining of those geometrical objects requires a variety of mathematical and computational tools