The electroreduction of CO2 into the highly value-added fuel formic acid (HCOOH) has been considered an ideal approach to convert renewable energy and mitigate environmental crisis. SnO2 electrode is one of the promising candidates to electrocatalytically convert CO2 to HCOOH, but its poor stability limits its future development and application. In this study, highly stable SnO2 /Bi2 O3 oxide catalysts are obtained by distributing SnO2 nanoparticles on the surface of Bi2 O3 sheets. The XPS spectra revealed an interfacial electronic transportation from Bi2 O3 sheets to SnO2 nanoparticles, which made SnO2 rich of electrons. The strong interfacial interaction protected the active sites of SnO2 from self-reduction in CO2 electroreduction reaction (CO2 RR), stabilizing SnO2 species in the composite catalyst even after long-term usage. Calculations based on density functional theory signified that the presence of Bi2 O3 favored the adsorption of HCOO* intermediate, improved the CO2 conversion into HCOOH on SnO2 /Bi2 O3 interface. As a result, the SnO2 /Bi2 O3 catalyst attained high performance on CO2 RR (the highest FE C 1 value of 90 % at -1.0 V vs. RHE), suppressing H2 evolution reaction (HER) at high potentials. In particular, the selectivity of HCOOH remained above 76 % in a wide potential window (from -1.0 to -1.4 V vs. https://www.selleckchem.com/products/jhu-083.html RHE) and a long duration (12 h).To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3 O4 and Co3 S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3 O4 @Co3 S4 nanocomposite, the nanostructure of Co3 S4 was fabricated from Co3 O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm-2 (5651.24 F g-1 ) at a current density of 6 mA cm-2 compared to the Co3 O4 /rGO/NF electrode with a capacitance of 3.06 F cm-2 (1230.77 F g-1 ) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg-1 , specific power density of 6048.03 W kg-1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s-1 ). Finally, by using Co3 O4 @Co3 S4 /rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm-2 at the applied current density of 1 mA cm-2 , and delivered an energy density of 0.143 Wh kg-1 at the power density of 5.42 W kg-1 .Indefinite allograft acceptance after immunosuppression withdrawal (ISW), also known as operational tolerance (OT), can occur spontaneously after liver transplantation (LT), but reliable and reproducible prognosis of OT versus non-OT outcomes remains elusive. To prime this, systematic extraction of OT-predictive factors from the literature is crucial. We provide the first comprehensive identification and synthesis of clinical parameters and biomarkers predicting spontaneous OT in non-autoimmune/non-replicative viral LT recipients selected for ISW. We searched Embase, Medline, the Cochrane Central Register of Controlled Trials, clinicaltrials.gov, and the World Health Organization International Clinical Trials Registry Platform for articles, conference abstracts, and ongoing trials. We contacted principal investigators of stand-alone abstracts and ongoing trials for unpublished data and screened citations and references of eligible articles. Twenty-three articles reporting on 11 completed ISW studies, 13 abstracts, and five trial registry entries were included. Longer time between LT and ISW was the only clinical parameter that may increase the incidence of OT. Prognostic biomarkers conspicuously differed between pediatric and adult ISW candidates. These included allograft gene expression patterns and peripheral blood immune exhaustion markers for adults, and histological allograft scores for children. Our results will foster cross-validation efforts to facilitate safe and harmonized candidate selection for successful ISW. A "leaky" gut barrier has been implicated in the initiation and progression of a multitude of diseases, for example, inflammatory bowel disease (IBD), irritable bowel syndrome and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST hCgA ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier. Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analysed by immunohistochemistry, western blot, ultrastructural and flowcytometry studies. FITC-dextran assays were used to measure intestinal barrier function. Mice were supplemented with CST or CgA fragment pancreastatin (PST CgA ). The microbial composition of cecum was determined. CgA and CST levels were measured in blood of IBD patients. Plasma levels of CST were elevated in IBD patients. CST-KO mice displayed (a) elongated tight, adherens junctions and desmosomes similar to IBD patients, (b) elevated expression of Claudin 2, and (c) gut inflammation. Plasma FITC-dextran measurements showed increased intestinal paracellular permeability in the CST-KO mice. This correlated with a higher ratio of Firmicutes to Bacteroidetes, a dysbiotic pattern commonly encountered in various diseases. Supplementation of CST-KO mice with recombinant CST restored paracellular permeability and reversed inflammation, whereas CgA-KO mice supplementation with CST and/or PST in CgA-KO mice showed that intestinal paracellular permeability is regulated by the antagonistic roles of these two peptides CST reduces and PST increases permeability. The pro-hormone CgA regulates the intestinal paracellular permeability. CST is both necessary and sufficient to reduce permeability and primarily acts by antagonizing PST. The pro-hormone CgA regulates the intestinal paracellular permeability. CST is both necessary and sufficient to reduce permeability and primarily acts by antagonizing PST.