Dynamic variation of water saturation near a wellbore may cause serious aqueous phase trapping (APT) damage in gas well production, especially in partly water-saturated tight sandstone gas reservoirs. In this paper, a prognosis model was deduced and used to characterize the dynamic variation of water saturation. In addition, experimental evaluations of APT damage were conducted to reveal the influence of water saturation changes on APT damage. The results showed that the new model used for the prognosis of the water saturation consists of immobile water and a water film and has good reliability. The results obtained from the model and experiments agreed with each other well; the error is very little and only 2.94%. Decrease of drawdown pressure or increase of hydrostatic pressure will result in increasing water saturation, which is positively correlated with APT damage. The chart curve of APT damage degree versus water saturation indicates that the APT damage degree will increases from 23.14 to 68.27 and 91.37% during the middle-later stages of tight sandstone gas well production, respectively. Finally, results of a sensitivity analysis showed that the surface tension and wetting contact angle have a great significant impact on water saturation. The interfacial modifier could effectively enter the reservoir pores in a near-wellbore zone and continuously act on the reduction of surface tension and increase of wetting contact angle, which is very helpful for releasing APT damage.Trace analysis of heavy metals in complex, environmentally relevant matrices remains a significant challenge for electrochemical sensors employing stripping voltammetry-based detection schemes. We present an alternative method capable of selectively preconcentrating Cu2+ ions at the electrode surface using chelating polymer-wrapped multiwalled carbon nanotubes (MWCNTs). An electrochemical sensor consisting of poly-4-vinyl pyridine (P4VP)-wrapped MWCNTs anchored to a poly(ethylene terephthalate) (PET)-modified gold electrode (r = 1.5 mm) was designed, produced, and evaluated. The P4VP is shown to form a strong association with Cu2+ ions, permitting preconcentration adjacent to the electrode surface for interrogation via cyclic voltammetry. The sensor exhibited a detection limit of 0.5 ppm with a linear range of 1.1-13.8 ppm (16.6-216 μM) and a relative standard deviation (RSD) of 4.9% at the Environmental Protection Agency (EPA) limit of 1.3 ppm. Evaluation in tap water, lake water, ocean water, and deionized water rendered similar results, highlighting the generalizability of the presented preconcentration strategy. The advantages of electrochemical analysis paired with polymeric chelation represent an effective platform for the design and deployment of heavy metal sensors for continuous monitoring of natural waters.Semiconducting single-walled carbon nanotubes (s-SWCNTs) are considered as a replacement for silicon in field-effect transistors (FETs), solar cells, logic circuits, and so forth, because of their outstanding electronic, optical, and mechanical properties. Herein, we have studied the reaction of pristine SWCNTs dispersed in a pluronic F-68 (PF-68) polymer solution with para-amino diphenylamine diazonium sulfate (PADDS) to separate nanotubes based on their metallicity. https://www.selleckchem.com/products/abc294640.html The preferential selectivity of the reactions was monitored by changes in the semiconducting (S22 and S33) and metallic (M11) bands by ultraviolet-visible-near infrared spectroscopy. Metallic selectivity depended on the concentrations of PADDS, reaction time, and the solution pH. Furthermore, separation of pure s-SWCNTs was confirmed by Raman spectroscopy and Fourier-transform infrared spectroscopy. After the removal of metallic SWCNTs, direct current electric field was applied to the pure s-SWCNT solution, which effectively directed the nanotubes to align in one direction as nanotube arrays with a longer length and high density. After that, electrically aligned s-SWCNT solution was cast on a silicon substrate, and the length of the nanotube arrays was measured as ∼2 to ∼14 μm with an areal density of ∼2 to ∼20 tubes/μm of s-SWCNTs. Next, electrically aligned s-SWCNT arrays were deposited on the channel of the FET device by drop-casting. Field-emission scanning electron microscopy and electrical measurements have been carried out to test the performance of the aligned s-SWCNTs/FETs. The fabricated FETs with a channel length of 10 μm showed stable electrical properties with a field-effect mobility of 30.4 cm2/Vs and a log10 (Ion/Ioff) current ratio of 3.96. We envisage that this new chemical-based separation method and electric field-assisted alignment could be useful to obtain a high-purity and aligned s-SWCNT array network for the fabrication of high-performance FETs to use in digital and analog electronics.The pharmacokinetics, safety, and anticancer efficacy profiles of nanoparticle albumin-bound (nab)-paclitaxel formulations are superior to those of solvent-based paclitaxel formulations. The aims of the present study were to study the effects of nab-paclitaxel and solvent-based paclitaxel formulations on the metabolic profiles of the model cell line (A549) and attempt to elucidate the associated metabolic pathways. A mass spectrometry-based cell metabolomics approach and viability evaluation were used to explore the potential difference. Western blotting was utilized to measure the levels of relevant proteins, and carnitine palmitoyltransferase 1 (CPT1) activities were quantified. Fold changes normalized to controls in levels of carnitine and several acylcarnitines were significantly different (p less then 0.05) between A549 cells treated with nab-paclitaxel and those treated with solvent-based paclitaxel. Relative to the controls, there were also significant fold change differences in palmitic and linoleic acid levels in the cell lysates, mitochondrial CPT1 activities, and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD) protein levels in the A549 cells subjected to the nab-paclitaxel and solvent-based paclitaxel formulations. Results suggested that the two formulations differentially modulated fatty acid oxidation in the A549 cells. While cell viability results did not reveal significant differences, the findings implied that a mass spectrometry-based cell metabolomics approach could be a sensitive tool to explore the differences caused by formulation changes without using animals. Since uncertainties of products containing nanomaterials warrant holistic screening to address safety concerns, the aforementioned approach may be of regulatory importance and is worth further investigation.