Correlational evidence in humans suggests that selective difficulties hearing in noisy, social settings may reflect premature auditory nerve degeneration. Here, we induced primary cochlear neural degeneration (CND) in adult mice and found direct behavioral evidence for selective detection deficits in background noise. To identify central determinants for this perceptual disorder, we tracked daily changes in ensembles of layer 2/3 auditory cortex parvalbumin-expressing inhibitory neurons and excitatory pyramidal neurons with chronic two-photon calcium imaging. CND induced distinct forms of plasticity in cortical excitatory and inhibitory neurons that culminated in net hyperactivity, increased neural gain, and reduced adaptation to background noise. Ensemble activity measured while mice detected targets in noise could accurately decode whether individual behavioral trials were hits or misses. After CND, random surges of hypercorrelated cortical activity occurring just before target onset reliably predicted impending detection failures, revealing a source of internal cortical noise underlying perceptual difficulties in external noise.Immune checkpoint inhibition has revolutionized the treatment of many cancers, including melanoma. However, primary and acquired resistance remain key challenges for the field. Promising results from a phase I clinical trial recently published in Science highlight the potential of modulating the microbiome via fecal transplant to overcome resistance to immunotherapy.A new study in Nature determines metastatic tropism in xenograft mouse models. This results in a metastasis map for 21 tumor types, the utility of which is demonstrated by identifying lipid metabolism to be uniquely altered in breast cancer cell lines that metastasize to the brain.Adoptive cell immunotherapy using in vitro expanded autologous tumor-infiltrating lymphocytes has the potential to mediate durable remission of certain types of cancer. A recent paper in Science shows that complete and durable control of metastatic melanoma requires the infusion of tumor-specific CD8+ T cells that have stem-cell-like properties.Writing in Cancer Cell and Cell, two groups investigate the nature of dormant cancer cells that persist after chemotherapy. These cells adopt a state that resembles diapause, an evolutionarily conserved adaptation used by embryos to survive inhospitable conditions. Understanding cancer diapause could uncover therapeutic strategies that reduce cancer relapse.Tumor suppressor p53 lacks conventional drug binding pockets that would facilitate rescue of cancer-driving mutations. In this issue, Chen et al. https://www.selleckchem.com/products/SB-202190.html discover a new role for an old drug, arsenic trioxide, in binding and stabilizing p53. The arsenic atom binds in a conserved, cryptic site and reactivates multiple p53 mutants.Comorbid conditions among cancer survivors are not a stranger to oncologists, but the conditions change when the cancer therapy toolbox expands. New interdisciplinary fields are recognized. We ask clinicians from psycho-oncology, cardio-oncology, and neurology to tell us how the fields have progressed and what to expect when we are standing at the crossroads of cancer.DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.