The monopolar spindle 1 ((hMps1/TTK) is a serine/threonine kinase that plays an important role in spindle assembly checkpoint signaling. To explore the possible relationship between TTK inhibition and radiosensitivity, we examined whether TTK inhibition influences cellular susceptibility of radiation. And we further revealed its mechanisms. We found that the expression of TTK was obviously higher in liver cancer tissues compared to the normal liver tissues. https://www.selleckchem.com/EGFR(HER).html Kaplan-Meier Plotter demonstrated that patients with low TTK expression levels had a longer overall survival than patients with high TTK expression levels. TTK inhibitor AZ3146 could simulated liver cancer cells to accumulate in the G2/M phase, which ultimately enhances DNA damage with more γ-H2AX foci and more apoptosis and necrosis induced by radiation, which prompted that TTK inhibition sensitized liver cancer cells to radiation. In addition, TTK inhibition altered cell-cycle progression and exacerbated centrosome abnormalities, resulting in enhanced mitotic catastrophe (MC) induced by radiation in a p21-mediated manner. In this study, we present evidences that the TTK inhibitor promotes the radiosensitivity of liver cancer cells through regulating cell cycle in p21-mediated manner in vitro, indicating that TTK inhibitor may be an attractive radiosensitizer for the patients with liver cancer.Osteosarcoma (OS) is the most common type of bone tumor that seriously affects limb function and induces great pain in patients. Lung metastasis and chemotherapy resistance are two key issues leading to the poor prognosis of OS patients, therefore new treatment targets and strategies are urgently needed. In our study, we uncovered the role of histone demethylase KDM4A in regulating OS cell ferroptosis and tumor progression. KDM4A was significantly upregulated in OS specimens and high KDM4A expression was associated with poorer prognosis in OS patients. Our data indicated that targeting KDM4A significantly increased OS cell death, enhanced cisplatin response, and attenuated migration ability in vitro. KDM4A depletion dramatically inhibited tumor progression and lung metastasis of OS in vivo Further experiments confirmed that KDM4A knockdown promoted OS cell ferroptosis, a special non-apoptotic form of cell death. KDM4A regulates SLC7A11 transcription and OS cell ferroptosis by controlling H3K9me3 demethylation in the promoter region of SLC7A11. Our findings deepened the recognition of epigenetic regulatory mechanism in OS tumorigenesis, chemoresistance, and metastasis, suggesting that KDM4A activity may be a potential therapeutic target for future OS treatment.T cells secrete several inflammatory cytokines that play a critical role in the progression of atherosclerosis. Although green tea epigallocatechin-3-gallate (EGCG) exerts anti-inflammatory and anti-atherosclerotic effects in animals, few studies have identified the mechanism underlying these effects in human primary T cells. This study investigated the pathway involved in EGCG modulation of cytokine secretion in activated human primary T cells. We pre-treated human primary T cells with EGCG (0.1, 1, 5, 10, and 20 μM) for 4 h and incubated them with or without phorbol 12-myristate 13-acetate and ionomycin (P/I) for 20 h. The cytokine production, activator protein (AP)-1 binding activity, and level of mitogen-activated protein kinase (MAPK) were assessed using enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, and Western blotting, respectively. At 10 and 20 μM, EGCG decreased interleukin (IL)-2 levels by 26.0% and 38.8%, IL-4 levels by 41.5% and 55.9%, INF-γ levels by 31.3% and 34.7%, and tumor-necrosis factor (TNF)-α levels by 23.0% and 37.6%, respectively. In addition, the level of phosphorylated c-Jun N-terminal (p-JNK) and extracellular signal-regulated kinase (p-ERK) was decreased, but not the level of p-p38 MAPK. EGCG did not alter any of the total protein amounts, suggesting a selective effect on specific types of MAPKs in stimulated human T cells. EGCG tended to inactivate AP-1 DNA-binding activity. The P/I-induced production of IL-2, IL-4, INF-γ, and TNF-α by human T cells was suppressed by AP-1 inhibitor in a concentration-dependent manner. In conclusion, EGCG suppressed cytokine secretion in activated human primary T cells, and this effect was likely mediated by AP-1 inactivation through the ERK and JNK, but not p38 MAPK, pathways. These results may be related to the mechanisms through which EGCG inhibits immune- or inflammation-related atherogenesis.Meiotic homologous recombination (HR) initiates with the programmed generation of DNA double-strand breaks (DSBs), which result in the exchange of genetic information and genome diversity. This process requires the tight cooperation of the MRE11-RAD50-NBS1 (MRN) complex to promote DSB formation and DNA end resection. However, the mechanism regulating MRN complex remains to be explored. In the present study, we report that MRN-interacting protein, MRNIP, is a novel factor for HR and is crucial for the expression of the MRN complex and loading of recombinases DMC1/RAD51. Knockout of Mrnip in mice led to aberrant synapsis, impaired HR, and male subfertility. In conclusion, MRNIP is a novel HR factor that probably promotes meiotic progression through the MRN complex.Lipopolysaccharide (LPS) is a major pathogenic factor in endotoxin shock or sepsis. Most antibiotics have little clinical anti-endotoxin activity, but some antimicrobial peptides (AMPs) have been shown to be effective in blocking LPS. We identified a novel peptide from the skin secretions of Bombina maxima (B. _maxima) by challenging the skin of frogs with an LPS solution. Peptide 2 has an amino acid sequence of LVGKLLKGAVGDVCGLLPIC. Peptide 2 possesses low hemolytic activity, low cytotoxicity against RAW 264.7 cells, and strong anti-inflammatory activity. Moreover, peptide 2 plays an anti-inflammatory role by inhibiting inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). A biolayer interferometry (BLI) assay indicated that peptide 2 binds to LPS with strong affinity and that this interaction has an affinity constant (KD) value of 1.05 × 10-9 M. A survival study showed that peptide 2 possesses potent LPS-neutralizing activity to protect LPS-treated mice from death. In conclusion, we have identified a potent peptide with LPS neutralizing activity, which lays a foundation for future research and development.