The identification of HDMF glucoside in the tea plant and the discovery of a novel-specific UDP-glucoseHDMF glucosyltransferase in tea plants provide the foundation for improvement of tea flavor and the biotechnological production of HDMF glucoside. © The Author(s) 2020.Catechins are the predominant products in tea plants and have essential functions for both plants and humans. Several genes encoding the enzymes regulating catechin biosynthesis have been identified, and the identification of single nucleotide polymorphisms (SNPs) resulting in nonsynonymous mutations within these genes can be used to establish a functional link to catechin content. Therefore, the transcriptomes of two parents and four filial offspring were sequenced using next-generation sequencing technology and aligned to the reference genome to enable SNP mining. Subsequently, 176 tea plant accessions were genotyped based on candidate SNPs using kompetitive allele-specific polymerase chain reaction (KASP). The catechin contents of these samples were characterized by high-performance liquid chromatography (HPLC), and analysis of variance (ANOVA) was subsequently performed to determine the relationship between genotypes and catechin content. As a result of these efforts, a SNP within the chalcone synthase (CHS) gene was shown to be functionally associated with catechin content. Furthermore, the geographical and interspecific distribution of this SNP was investigated. Collectively, these results will contribute to the early evaluation of tea plants and serve as a rapid tool for accelerating targeted efforts in tea breeding. © The Author(s) 2020.Chrysanthemum (Chrysanthemum morifolium) black spot disease (CBS) poses a major threat to Chrysanthemum cultivation owing to suitable climate conditions and current lack of resistant cultivars for greenhouse cultivation. In this study, we identified a number of genes that respond to Alternaria alternata infection in resistant and susceptible Chrysanthemum cultivars. Based on RNA sequencing technology and a weighted gene coexpression network analysis (WGCNA), we constructed a model to elucidate the response of Chrysanthemum leaves to A. alternata infection at different stages and compared the mapped response of the resistant cultivar 'Jinba' to that of the susceptible cultivar 'Zaoyihong'. In the early stage of infection, when lesions had not yet formed, abscisic acid (ABA), salicylic acid (SA) and EDS1-mediated resistance played important roles in the Chrysanthemum defense system. With the formation of necrotic lesions, ethylene (ET) metabolism and the Ca2+ signal transduction pathway strongly responded to A. alternata infection. During the late stage, when necrotic lesions continued to expand, members of the multidrug and toxic compound extrusion (MATE) gene family were highly expressed, and their products may be involved in defense against A. alternata invasion by exporting toxins produced by the pathogen, which plays important roles in the pathogenicity of A. alternata. Furthermore, the function of hub genes was verified by qPCR and transgenic assays. https://www.selleckchem.com/products/actinomycin-d.html The identification of hub genes at different stages, the comparison of hub genes between the two cultivars and the highly expressed genes in the resistant cultivar 'Jinba' provide a theoretical basis for breeding cultivars resistant to CBS. © The Author(s) 2020.Photooxidative stress, when combined with elevated temperatures, triggers various defense mechanisms leading to physiological, biochemical, and morphological changes in fruit tissue. Furthermore, during sun damage, apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit. Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days. Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue. At harvest, Fuji apples with different sun exposure levels, such as exposed to direct sunlight (Exp), shaded (Non-Exp), and with severe sun damage (Sev), were also characterized. In fruit suddenly exposed to sunlight, the expression levels of phenylpropanoid-related genes, phenylalanine ammonia lyase (MdPAL), chalcone synthase (MdCHS), and flavanone-3-hydroxylase (MdF3H), were upregulated in the skin and flesh of Exp and Sev. Exposure had little effect on the lignin-related genes caffeic acid in Exp and Sev tissues compared to Non-Exp tissues, while the other pectin-rich fractions, that is, CDTA-soluble (CSF) and Na2CO3-soluble (NSF), were increased only in Sev. The amount of hemicellulose and cellulose did not differ among fruit conditions. These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress, which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit, with the involvement of stress phytohormones such as ethylene. © The Author(s) 2020.High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (Malus domestica) plants overexpressing MdATG18a with high temperature and found that autophagy protected them from heat stress. Overexpression of MdATG18a in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO2 assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several HSP genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage. © The Author(s) 2020.