Epidemiologic evidence and animal studies implicate dietary emulsifiers in contributing to the increased prevalence of diseases associated with intestinal inflammation, including inflammatory bowel diseases and metabolic syndrome. Two synthetic emulsifiers in particular, carboxymethylcellulose and polysorbate 80, profoundly impact intestinal microbiota in a manner that promotes gut inflammation and associated disease states. In contrast, the extent to which other food additives with emulsifying properties might impact intestinal microbiota composition and function is not yet known. To help fill this knowledge gap, we examined here the extent to which a human microbiota, maintained ex vivo in the MiniBioReactor Array model, was impacted by 20 different commonly used dietary emulsifiers. Microbiota density, composition, gene expression, and pro-inflammatory potential (bioactive lipopolysaccharide and flagellin) were measured daily. In accordance with previous studies, both carboxymethylcellulose and polysthat clinical trials are needed to reduce the usage of the most detrimental compounds in favor of the use of emulsifying agents with no or low impact on the microbiota. Video abstract. Colorectal cancer (CRC) is one of the top ten causes of cancer deaths in the world. Despite an increased prevalence of colorectal cancer has been documented from developing countries, there is no any report regarding gut microbiota among colorectal cancer patients in Ethiopia. Therefore, the current study evaluated cultivable aerobic gut bacterial distributions among malignant and its adjacent normal biopsies of CRC patients. CRC patients who were under colorectal cancer resection surgery during April 2017 to February 2018 at Felege Hiwot Referral and University of Gondar Teaching Hospitals enrolled in the study. Biopsy specimens were taken from malignant and its adjacent normal-appearing tissues. Bacterial cultivation, quantification and characterization of saline washed biopsies were performed under aerobic and candle jar conditions. Differences in bacterial microbiota compositions between malignant and normal tissue biopsies were evaluated and analyzed using Microsoft excel 2010 and GraphPad Prism5 sta (45 %) than in its matched normal tissues (23 %). Furthermore, the family Enterococcaceae (14 %) of phylum Firmicutes was solely isolated from malignant tissue biopsies. The overall microbial composition of normal and malignant tissues was considerably different among the study participants. Further culture independent analysis of mucosal microbiota will provide detail pictures of microbial composition differences and pathogenesis of CRC in Ethiopian settings. The overall microbial composition of normal and malignant tissues was considerably different among the study participants. Further culture independent analysis of mucosal microbiota will provide detail pictures of microbial composition differences and pathogenesis of CRC in Ethiopian settings. Limb salvage with endoprosthetic reconstruction is the current standard practice for the surgical management of lower extremity bone tumors in skeletally mature patients and typically includes tumor resection followed by the functional limb reconstruction with modular metallic and polyethylene endoprosthetic implants. https://www.selleckchem.com/products/dir-cy7-dic18.html However, owing to the complexity and length of these procedures, as well as the immunocompromised nature of patients treated with chemotherapy, the risk of surgical site infection (SSI) is high. The primary research objective of the Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) trial is to assess whether a 5-day regimen of post-operative antibiotics decreases the risk of SSI at 1 year post-operatively compared to a 1-day regimen. This article describes the statistical analysis plan for the PARITY trial. The PARITY trial is an ongoing multi-center, blinded parallel two-arm randomized controlled trial (RCT) of 600 participants who have been diagnosed with a primary bone tumor, a sy regimen. ClinicalTrials.gov NCT01479283 . Registered on 24 November 2011. ClinicalTrials.gov NCT01479283 . Registered on 24 November 2011. Leprosy is known to be unevenly distributed between and within countries. High risk areas or 'hotspots' are potential targets for preventive interventions, but the underlying epidemiologic mechanisms that enable hotspots to emerge, are not yet fully understood. In this study, we identified and characterized leprosy hotspots in Bangladesh, a country with one of the highest leprosy endemicity levels globally. We used data from four high-endemic districts in northwest Bangladesh including 20 623 registered cases between January 2000 and April 2019 (among ~ 7 million population). Incidences per union (smallest administrative unit) were calculated using geospatial population density estimates. A geospatial Poisson model was used to detect incidence hotspots over three (overlapping) 10-year timeframes 2000-2009, 2005-2014 and 2010-2019. Ordinal regression models were used to assess whether patient characteristics were significantly different for cases outside hotspots, as compared to cases within weak (i.e., reterogeneous distribution with clear hotspots in northwest Bangladesh throughout a 20-year period of decreasing incidence. Findings confirm that leprosy hotspots represent areas of higher transmission activity and are not solely the result of active case finding strategies. SINEs comprise a significant part of animal genomes and are used to study the evolution of diverse taxa. Despite significant advances in SINE studies in vertebrates and higher eukaryotes in general, their own evolution is poorly understood. We have discovered and described in detail a new Squam3 SINE specific for scaled reptiles (Squamata). The subfamilies of this SINE demonstrate different distribution in the genomes of squamates, which together with the data on similar SINEs in the tuatara allowed us to propose a scenario of their evolution in the context of reptilian evolution. Ancestral SINEs preserved in small numbers in most genomes can give rise to taxa-specific SINE families. Analysis of this aspect of SINEs can shed light on the history and mechanisms of SINE variation in reptilian genomes. Ancestral SINEs preserved in small numbers in most genomes can give rise to taxa-specific SINE families. Analysis of this aspect of SINEs can shed light on the history and mechanisms of SINE variation in reptilian genomes.