Ethidium Bromide (Eth-Br) is an intercalating agent commonly used in medical and biological laboratories as a DNA staining dye. Despite its popular use, aqueous solutions containing Eth-Br showed high toxicity, mutagenic capacity, and deactivate DNA transcription. In this study, the removal of Eth-Br from aqueous solutions by gamma irradiation has been fully investigated. Gamma irradiation was capable of achieving a near complete removal of Eth-Br in neutral and non-buffered aqueous solutions at an absorbed dose of 15 kGy. Various experimental conditions were studied and showed that the removal efficiency is not diminished. The addition of hydrogen peroxide (2 %) to the irradiated solutions reduced the D50 and D90 by 50 %. Modeling Eth-Br decomposition showed that the reaction followed pseudo first-order kinetics and reaches at least 90 % removal under all experimental conditions. TOC and HPLC measurements confirmed that Eth-Br is fully mineralized when the absorbed dose reaches 15 kGy. The biological activity of Eth-Br after irradiation treatment was investigated with synthetic DNA and natural DNA. The biological activity of Eth-Br was deactivated at an absorbed dose as low as 5 kGy. Toxicity measurement with E-coli bacteria also confirmed that the absorbed dose of 5 kGy was sufficient to remove Eth-Br toxicity. In this paper, we propose an efficient simultaneous refractory organics degradation and electricity generation method for carbonate-containing wastewater based on carbonate radical reactions initiated by a BiVO4-Au/PVC (PVC photovoltaic cell) system. In the system, nanoporous BiVO4 film and Au modified PVC were used as photoanode and photocathode, respectively. HCO3- was used as the electrolyte. Carbonate radicals, which have lower recombination rates than hydroxyl radicals and strong oxidation abilities, can be generated easily by the capture reaction of hydroxyl radicals with HCO3-, which is one of the most abundant anions in the aquatic environment. The results show that the removal ratios of rhodamine b, methyl orange and methylene blue in the system increased sharply to 77.98 %, 89.15 % and 93.2 % from 18.23 %, 21 % and 23.14 % (BiVO4-Pt/ SO42-), respectively, after 120 min. Meanwhile, the short-circuit current density is up to 2.19-2.41 times larger than the traditional system. Other common ions in natural water minimally affected the properties of the new system. The excellent performance could be ascribed to large amounts of carbonate radicals in the system, which have great potential for efficient carbonate-containing wastewater treatment and energy recovery. Developing efficient catalysts for persulfate (PS) activation is important for the potential application of sulfate-radical-based advanced oxidation process. Herein, we demonstrate single iron atoms confined in MoS2 nanosheets with dual catalytic sites and synergistic catalysis as highly reactive and stable catalysts for efficient catalytic oxidation of recalcitrant organic pollutants via activation of PS. The dual reaction sites and the interaction between Fe and Mo greatly enhance the catalytic performance for PS activation. The radical scavenger experiments and electron paramagnetic resonance results confirm and SO4- rather than HO is responsible for aniline degradation. https://www.selleckchem.com/products/edralbrutinib.html The high catalytic performance of Fe0.36Mo0.64S2 was interpreted by density functional theory (DFT) calculations via strong metal-support interactions and the low formal oxidation state of Fe in FexMo1-xS2. FexMo1-xS2/PS system can effectively remove various persistent organic pollutants and works well in a real water environment. Also, FexMo1-xS2 can efficiently activate peroxymonosulfate, sulfite and H2O2, suggesting its potential practical applications under various circumstances. In this research, biodegradation of hexadecane as a model contaminant in solid soil using both free and immobilized Pseudomonas Aeruginosa, capable of producing biosurfactant, was investigated. Coconut fibers in three mesh sizes were used as a cellulosic biocarrier for immobilization procedure. Bioremediation experiments were monitored for 60 days after incubation at 27 °C in small columns, containing contaminated solid soil, with the capability of aeration from bottom to top. The difference in the number of immobilized bacteria cells on the fibers with different particle sizes, emphasizes the importance of choosing an optimized carrier size. Enhancement in hexadecane degradation up to 50 % at the end of experiments was achieved by immobilized Pseudomonas Aeruginosa on the fibers with a mesh size between 8 and 16 compared to inoculation of free bacteria cells into the soil. Effect of mixing the pretreated fibers with soil and inoculating free cells into this mixture was also investigated compared to free cell experiments without fiber, which led to 28 % decrease in hexadecane degradation. Obtained kinetic equations for experiments confirm the impact of immobilization of bacteria on the enhancement of biodegradation rate and reduction of the half-life of the contaminant is soil. Inhibition of high calcium during anaerobic wastewater treatment has been studied in recent years, focusing on calcium precipitates in anaerobic granule but neglecting the effect of functional microbes. In this study, key factors of calcification and microbial behaviors especially methanogens of calcified anaerobic granule (AnGS) were investigated in batch assays with calcium level varying from 0 to 5 g L-1. The results showed that the COD removal efficiency and specific methane activity of calcified AnGS were restrained with calcium addition, especially high calcium (>2 g L-1), and little tolerance of calcified AnGS to Ca2+ was underlined compared with non-calcified AnGS. Analysis of calcium mass flow from solution to sludge validated the formation of calcium precipitates influenced by calcium concentration, pH and HCO3-. Besides, death of microbes in outer layer of anaerobic granules was triggered by calcium precipitation. Most importantly, aceticlastic Methanothrix genus was the dominant methanogen, and its relative abundance was correlative negatively with cumulative decrease of bulk Ca2+. Hydrogenotrophic Methanobacterium was enriched at higher calcium level, and it suggested that hydrogenotrophic methanogenesis could play a role in alleviating the inhibition of high calcium.