https://www.selleckchem.com/products/crenolanib-cp-868596.html Quantitative identification of the main sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soils around multiple types of key areas is of great significance for blocking pollution sources. However, there is a lack of more comprehensive relevant research. In this study, Beijing was taken as the research area and four main sources were identified using the positive matrix factorization (PMF) method. The concentration of Pb, PAHs, Cr, and Hg in soils was significantly affected by the presence of landuse type, road traffic, natural factor, and industrial production, respectively, and the farmland, distance to main road, Proterozoic Changcheng-Jixian parent material and cinnamon soil type, and the gross industrial production make greater contributions to these four factors respectively than other variables. Moreover, the uncertainty of the PMF indicates that this four-factor PMF solution is stable and appropriate. These results provide support for the comprehensive control of soil environmental risks.Agricultural products from seleniferous areas commonly face problems associated with substantial variation in selenium (Se) concentration, which is mainly caused by the heterogeneity of Se bioavailability in soil. Many studies have assessed the bioavailability of Se and its influencing factors using soil samples treated with exogenous Se. Given the distinctly different characteristics of Se-spiked soils and naturally seleniferous soils, exploring Se bioavailability in naturally seleniferous soils is crucial to the stable production of Se-enriched agricultural products. In this study, we used the classical sequential extraction method to determine the Se fractionation and then applied the diffusive gradients in thin-films (DGT) technique to assess the Se bioavailability in naturally seleniferous soils. The results indicated that soluble and exchangeable Se fractions with high bioavailability ac