https://www.selleckchem.com/products/mln-4924.html The ongoing progress in deep learning contributes to handle coronavirus infection and plays an effective role to develop appropriate solutions. It is expected that this paper would be a great help for the researchers who would like to contribute to the development of remedies for this current pandemic in this area.The SMS phishing is another method where the phisher operates the SMS as a medium to communicate with the victims and this method is identified as smishing (SMS + phishing). Researchers promoted several anti-phishing methods where the correlation algorithm is applied to explore the relevancy of the features since there are numerous features in the features corpus. The correlation algorithm assesses the rank of the features that is the highest rank leads to the more relevant to the appropriate assignment. Therefore, this paper analyses four rank correlation algorithms particularly Pearson rank correlation, Spearman's rank correlation, Kendall rank correlation, and Point biserial rank correlation with a machine-learning algorithm to determine the best features set for detecting Smishing messages. The result of the investigation reveals that the AdaBoost classifier offered better accuracy. Further analysis shows that the classifier with the ranking algorithm that is Kendall rank correlation appeared superior accuracy than the other correlation algorithms. The inferred of this experiment confirms that the ranking algorithm was able to reduce the dimension of features with 61.53% and presented an accuracy of 98.40%.Pneumonia, an acute respiratory infection, causes serious breathing hindrance by damaging lung/s. Recovery of pneumonia patients depends on the early diagnosis of the disease and proper treatment. This paper proposes an ensemble method-based pneumonia diagnosis from Chest X-ray images. The deep Convolutional Neural Networks (CNNs)-CheXNet and VGG-19 are trained and used to extract features from given