3D models of cancer have the potential to improve basic, translational, and clinical studies. Patient-derived xenografts, spheroids, and organoids are broad categories of 3D models of cancer, and to date, these 3D models of cancer have been established for a variety of cancer types. In lung cancer, for example, 3D models offer a promising new avenue to gain novel insights into lung tumor biology and improve outcomes for patients afflicted with the number one cancer killer worldwide. However, the adoption and utility of these 3D models of cancer vary, and demonstrating the fidelity of these models is a critical first step before seeking meaningful applications. Here, we review use cases of current 3D lung cancer models and bioinformatic approaches to assessing model fidelity. Bioinformatics approaches play a key role in both validating 3D lung cancer models and high dimensional functional analyses to support downstream applications.The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. https://www.selleckchem.com/products/nx-1607.html aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p less then 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.In recent years, inhaled sedation has been increasingly used in the intensive care unit (ICU). The aim of this prospective, controlled trial was to compare washout and awakening times after long term sedation with desflurane and isoflurane both administered with the Mirus™ system (TIM GmbH, Koblenz, Germany). Twenty-one consecutive critically ill patients were alternately allocated to the two study groups, obtaining inhaled sedation with either desflurane or isoflurane. After 24 h study sedation, anesthetic washout curves were recorded, and a standardized wake-up test was performed. The primary outcome measure was the time required to decrease the endtidal concentration to 50% (T50%). Secondary outcome measures were T80% and awakening times (all extremities moved, RASS -2). Decrement times (min) (desflurane versus isoflurane, median (1st quartile-3rd quartile)) (T50% 0.3 (0.3-0.4) vs. 1.3 (0.4-2.3), log-rank test P = 0.002; P80% 2.5 (2-5.9) vs. 12.1 (5.1-20.2), P = 0.022) and awakening times (to RASS -2 7.5 (5.5-8.8) vs. 41.0 (24.5-43.0), P = 0.007; all extremities moved 5.0 (4.0-8.5) vs. 13.0 (8.0-41.25), P = 0.037) were significantly shorter after desflurane compared to isoflurane. The use of desflurane with the Mirus™ system significantly shortens the washout times and leads to faster awakening after sedation of critically ill patients.Stroke can adversely affect the coordination and judgement of drivers due to executive dysfunction, which is relatively common in the post-stroke population but often undetected. Quantitatively examining vehicle control performance in post-stroke driving becomes essential to inspect whether and where post-stroke older drivers are risky. To date, it is unclear as to which indicators, such as lane keeping or speed control, can differentiate the driving performance of post-stroke older drivers from that of normal (neurotypical) older drivers. By employing a case-control design using advanced vehicle movement tracking and analysis technology, this pilot study aimed to compare the variations in driving trajectory, lane keeping and speed control between the two groups of older drivers using spatial and statistical techniques. The results showed that the mean standard deviation of lane deviation (SDLD) in post-stroke participants was higher than that of normal participants in complex driving tasks (U-turn and left turn) but almost the same in simple driving tasks (straight line sections). No statistically significant differences were found in the speed control performance. The findings indicate that, although older drivers can still drive as they need to after a stroke, the decline in cognitive abilities still imposes a higher cognitive workload and more effort for post-stroke older drivers. Future studies can investigate post-stroke adults' driving behaviour at more challenging driving scenarios or design driving intervention programs to improve their executive function in driving.Chloramphenicol (CAP) is a harmful compound associated with human hematopathy and neuritis, which was widely used as a broad-spectrum antibacterial agent in agriculture and aquaculture. Therefore, it is significant to detect CAP in aquatic environments. In this work, carbon nanotubes/silver nanowires (CNTs/AgNWs) composite electrodes were fabricated as the CAP sensor. Distinguished from in situ growing or chemical bonding noble metal nanomaterials on carbon, this CNTs/AgNWs composite was formed by simple solution blending. It was demonstrated that CNTs and AgNWs both contributed to the redox reaction of CAP in dynamics, and AgNWs was beneficial in thermodynamics as well. The proposed electrochemical sensor displayed a low detection limit of up to 0.08 μM and broad linear range of 0.1-100 μM for CAP. In addition, the CNTs/AgNWs electrodes exhibited good performance characteristics of repeatability and reproducibility, and proved suitable for CAP analysis in real water samples.