https://www.selleckchem.com/products/cinchocaine.html CONCLUSIONS This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs.BACKGROUND The underlying mechanism involved in ovarian cancer stemness and chemoresistance remains largely unknown. Here, we explored whether the regulation of c-Kit and plasma membrane prohibitin (PHB) affects ovarian cancer stemness and chemotherapy resistance. METHODS Mass spectrum analysis and an in vitro kinase assay were conducted to examine the phosphorylation of PHB at tyrosine 259 by c-Kit. The in vitro effects of c-Kit on membrane raft-PHB in ovarian cancer were determined using tissue microarray (TMA)-based immunofluorescence, western blotting, immunoprecipitation, colony and spheroid formation, cell migration and cell viability assays. In vivo tumor initiation and carboplatin treatment were conducted in nude mice. RESULTS We found that c-Kit and PHB colocalized in the raft domain and were positively correlated in human ovarian serous carcinoma. c-Kit interacted with PHB and facilitated the phosphorylation of PHB at tyrosine 259 (phospho-PHBY259) in the membrane raft to enhance ovarian cancer cellthe Notch3 and β-catenin signaling pathways. Targeting the c-Kit/raft-phospho-PHBY259 axis may provide a new therapeutic strategy for treating patients with ovarian cancer.The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy ex