We present a simple technique to characterize the spatial non-uniformity of a liquid-crystal on silicon (LCOS) spatial light modulator (SLM). https://www.selleckchem.com/ It is based on illuminating the display with a wavelength out of the operation range, so there is a significant reflection at the output surface. As a consequence, a Gires-Tournois interferometer is directly created, without any alignment requirement and insensitive to vibrations. The beam reflected at the output surface is the reference beam, while the beam reflected at the silicon backplane is modulated with the addressed gray level in order to quantitatively derive its deformation. We provide an experimental demonstration using a LCOS-SLM designed to operate in the near-infrared range but illuminated with visible light.We report results of a study of the laser induced damage threshold (LIDT) behavior of ion beam sputtered HfO2/SiO2 multilayer coatings on YbYAG using 1-on-1 and N-on-1 test protocols. The tests were conducted at ambient, vacuum, and cryogenic conditions using 280 ps pulses at λ=1030nm. The 1-on-1 LIDT of antireflection (AR) stacks is found to be only slightly reduced under vacuum and cryogenic conditions, while that of high reflectivity (HR) stacks is insensitive to environmental conditions within the uncertainty of the measurements. Cryogenic N-on-1 tests show the LIDT of the HR coating is almost the same as in the 1-on-1 tests. Conversely, the cryogenic N-on-1 test of the AR coating shows damage at ∼13J/cm2, a fluence lower than the 20.4J/cm2 of 1-on-1 tests. The AR damage behavior is found to be affected by imperfections at the YbYAG surface. These findings show that high surface quality is required to increase energy extraction from active mirror laser amplifiers.Surface-normal electroabsorption modulators (SNEAMs) have unique electro-optic modulation properties; however, their behavior and performance at high light intensity is affected by thermal nonlinearities that take place in the modulator active volume. Here we show a novel, to the best of our knowledge, approach to make SNEAMs insensitive to optical power without the use of power-hungry heaters or feedback control systems. By passively compensating for the thermo-optic dependence of the SNEAM resonant cavity, we obtain an eight-fold reduction in the wavelength shift of the SNEAM response at 4 dBm of input power. Furthermore, we show no appreciable degradation in the SNEAM eye diagram at 25 Gbit/s, when the input power is increased up to 2 dBm, which is about four times higher than in conventional SNEAMs.Measuring rough surfaces is challenging because the proven topographic methods are impaired by the adverse effects of diffuse light. In our method, the measured surface is marked by fluorescent nanobeads allowing a complete suppression of diffuse light by bandpass filtering. Light emitted by each fluorescent bead is shaped to a double-helix point spread function used for three-dimensional bead localization on the surface. This non-interferometric measurement of rough surface topography is implemented in a vibration resistant setup. The comparison of our method with vertical scanning interferometry shows that a commercial profiler is surpassed when ground glass surfaces with steep slopes are measured.We present theoretical and experimental demonstrations of a novel, to the best of our knowledge, diffuse optical imaging method that is based on the concept of dual slopes (DS) in frequency-domain near-infrared spectroscopy. We consider a special array of sources and detectors that collects intensity (I) and phase (ϕ) data with multiple DS sets. We have recently shown that DSϕ reflectance data features a deeper sensitivity with respect to DSI reflectance data. Here, for the first time, we describe a DS imaging approach based on the Moore-Penrose inverse of the sensitivity matrix for multiple DS data sets. Using a circular 8-source/9-detector array that generates 16 DS data sets at source-detector distances in the range 20-40 mm, we show that DSI images are more sensitive to superficial (10mm) perturbations in highly scattering media.We fabricate 100% fill factor microlens arrays (MLAs) using femtosecond laser direct writing. The array consists of periodical hexagonal plano-convex microlens units with a diameter of 9 µm. The focusing efficiency of each microlens is measured to be 92%. Combined with a CCD camera, the MLA works as a Shack-Hartmann wavefront sensor. We use it to detect wavefronts of both oblique incident plane beams and vortex beams. The experimental results match well with theoretical ones.Resonant dispersive wave (RDW) emission in gas-filled hollow waveguides is a powerful technique for the generation of bright few-femtosecond laser pulses from the vacuum ultraviolet to the near infrared. Here, we investigate deep-ultraviolet RDW emission in a hollow capillary fiber filled with a longitudinal gas pressure gradient. We obtain broadly similar emission to the constant-pressure case by applying a surprisingly simple scaling rule for the gas pressure and study the energy-dependent dispersive wave spectrum in detail using simulations. We further find that in addition to enabling dispersion-free delivery to experimental targets, a decreasing gradient also reduces the pulse stretching within the waveguide itself, and that transform-limited pulses with 3 fs duration can be generated by using short waveguides. Our results illuminate the fundamental dynamics underlying this frequency conversion technique and will aid in fully exploiting it for applications in ultrafast science and beyond.The long-wave infrared (LWIR) spectral region spanning ∼8-12µm is useful for many scientific and industrial applications. As traditional multilayer film components are not straightforwardly realized at these bands, we provide design, fabrication, and testing of polarization independent bandstop filters based on the guided-mode resonance (GMR) effect. Focusing on the zero-contrast grating architecture, we successfully fabricate prototype filters in the Ge-on-ZnSe materials system. Applying mask-based photolithography and dry etching, photoresist patterns form the desired Ge grating structures. The resulting devices exhibit clean transmittance nulls and acceptably high sidebands. Moreover, we verify polarization independent notch filtering by assembling two identical GMR filters with gratings oriented orthogonally. This approach to realize effective GMR elements will be useful for various fields including photonic and optoelectronic devices operating in the LWIR region.