https://www.selleckchem.com/products/Maraviroc.html rticularly, noncardiovascular diseases were prevalent and associated with adverse outcomes. Reformation of organization and staffing practices may be considered to adapt to the changed landscape.[This corrects the article DOI 10.3389/fgene.2020.590924.].N7-methylguanosine (m7G) is a typical positively charged RNA modification, playing a vital role in transcriptional regulation. m7G can affect the biological processes of mRNA and tRNA and has associations with multiple diseases including cancers. Wet-lab experiments are cost and time ineffective for the identification of disease-related m7G sites. Thus, a heterogeneous network method based on Convolutional Neural Networks (HN-CNN) has been proposed to predict unknown associations between m7G sites and diseases. HN-CNN constructs a heterogeneous network with m7G site similarity, disease similarity, and disease-associated m7G sites to formulate features for m7G site-disease pairs. Next, a convolutional neural network (CNN) obtains multidimensional and irrelevant features prominently. Finally, XGBoost is adopted to predict the association between m7G sites and diseases. The performance of HN-CNN is compared with Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), as well as Gradient Boosting Decision Tree (GBDT) through 10-fold cross-validation. The average AUC of HN-CNN is 0.827, which is superior to others.Current image encryption algorithms have various deficiencies in effectively protecting medical images with large storage capacity and high pixel correlation. This article proposed a new image protection algorithm based on the deoxyribonucleic acid chain of dynamic length, which achieved image encryption by DNA dynamic coding, generation of DNA dynamic chain, and dynamic operation of row chain and column chain. First, the original image is encoded dynamically according to the binary bit from a pixel, and the DNA sequence matrix is scrambled. Second,