We evaluated (1) whether the sample transport time could lead to a significant loss of carbon through microbial respiration and to a change of measured respiration rates, which can be a problem in areas difficult to access, with a long travel time from field to laboratory; (2) whether the method used to quantify heterotrophic respiration for agricultural soils is adequate for horizons that remain always water-saturated or close to saturation. Surface horizons and deep Bh of Amazonian podzols were sampled and kept under refrigeration to maintain moisture of sampling time. Incubations of aliquot of the same sample were initiated on the sampling day and 3, 6, 9 and 12 days after sampling. Other aliquots were conducted on a tension table to given water potential (60 cm H2O) prior to incubation.•Soil samples, whether disturbed or not, should not be dried but kept at sampling moisture in semi-open plastic bags under refrigeration at 4 °C, respiration monitoring must be conducted without prior water potential adjustment.•In such conditions,12 days between sampling and beginning of measurement did not affected respiration results.•The method used for agricultural soils gave different results and does not make sense for soils under perudic moisture regime.Extensive wetland habitat loss across the continental United States has caused post-harvested rice fields to become an important surrogate wetland habitat for migratory waterfowl. Flooded rice fields used by waterfowl have the potential to provide agronomic benefits to soil. Increasing interest in the reciprocal relationship between birds and flooded rice fields has given rise to many studies that aim to quantify bird abundance. However, surveying large flocks of birds in open agricultural fields is challenging because traditional ground and aerial surveys can cause birds to flush or re-allocate spatially, thus biasing counts that are reflected in following management practice recommendations. To avoid this, we used camera surveys and an open-access image manipulation program to estimate 24-h bird use of rice fields. Indices of bird abundance from counts were used to estimate fecal matter input to rice fields. Camera surveys have the potential to limit biases seen in other methods because of their ability to capture bird use over a 24-h period over an entire season and the ability for multiple researchers to survey the same site.•Surveying bird flocks by traditional ground or aerial surveys can bias bird abundance estimates.•Camera surveys of waterfowl in rice fields were used to estimate bird abundance and fecal matter input.•Camera surveys reflect static bird use over 24-h which can lower bias seen in traditional methods.Genetically encoded ratiometric fluorescent probes are cutting-edge tools in biology. They allow precise and dynamic measurement of various physiological parameters within cell compartments. Because data extraction and analysis are time consuming and may lead to inconsistencies between results, we describe here a standardized pipeline for•Semi-automated treatment of time-lapse fluorescence microscopy images.•Quantification of individual cell signal.•Statistical analysis of the data.First, a dedicated macro was developed using the FIJI software to reproducibly quantify the fluorescence ratio as a function of time. Raw data are then exported and analyzed using R and MATLAB softwares. Calculation and statistical analysis of selected graphic parameters are performed. In addition, a functional principal component analysis allows summarizing the dataset. Finally, a principal component analysis is performed to check consistency and final analysis is presented as a visual diagram. The method is adapted to any ratiometric fluorescent probe. As an example, the analysis of the cytoplasmic HyPer probe in response to an acute cell treatment with increasing amounts of hydrogen peroxide is shown. In conclusion, the pipeline allows to save time and analyze a larger amount of samples while reducing manual interventions and consequently increasing the robustness of the analysis.The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. https://www.selleckchem.com/products/cp2-so4.html The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids.•We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems.•We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor.•We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.Pesticide contamination of natural waters due to agricultural activities has been a widely publicized topic over the past 30 years and will continue to be a problem in the future. The determination of pesticide residues in water samples is necessary for solving various environmental problems. The aim of this work was to develop an efficient method on the basis of solid phase extraction (SPE) technique for the determination of 34 multiclass pesticides in natural waters. SPE using C18 extraction disks followed by gas chromatography (GC-MS) and liquid chromatography (LC-MS) were used for the determination of various pesticides residues in environmental waters. The developed SPE method provided good repeatability and reproducibility range, high extraction efficiency and low LODs. The performance results confirm the usefulness of the proposed methodology for the analysis multiclass pesticides in natural waters. The key benefits of this methodology are•It possesses the advantages of SPE (fast, simple, highly sensitive) and could be potentially extended to other classes of pesticides.