We analyzed the allergic rhinitis signals as nasal frictions and sneezing and observed that carvo decreased these two signals as well as serum OVA-specific IgE titer, type 2 cytokine synthesis, mainly IL-13, with increasing of IL-10 production. Decreasing of IL-13 production corroborated with decreasing of mucus production and these effects were dependent on p38MAPK/NF-κB(p65) signaling pathway inhibition. Therefore, these data demonstrated that a monoterpene of essential oils presents anti-allergic property on an experimental model of CARAS suggesting a new drug prototype to treat this allergic syndrome.Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a serious respiratory disease, the mechanism is unclear. This paper revealed the mechanism of ganoderic acid B (BB) on lipopolysaccharide-induced pneumonia in mice. Pneumonia model was induced by LPS in mice and A549 cells. Lung dry/wet weight (W/D) and myeloperoxidase (MPO) activity in lung were examined. Lung histopathological changes was observed by HE staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in mice and A549 cells were detected. Rho/NF-κB pathway in mice and A549 cells were examined by Western Blot. BB significantly reduced W/D and MPO activity, restored lung histopathological changes. BB also increased SOD, decreased MDA, TNF-α, IL-1β and IL-6 in mice and A549 cells. In addition, BB inhibited Rho/NF-κB pathway in mice and A549 cells. BB has protective effect on LPS-induced pneumonia in mice, and its mechanism is related to the regulation of Rho/NF-κB signaling pathway.Rheumatoid arthritis (RA) is an inflammatory disease with symmetric polyarthritis. IL-6 and NLRP3 inflammasome in macrophages contribute to the pathogenesis of RA. This study aimed to investigate the relationship between IL-6 and the NLRP3 inflammasome in RA. Here, we found that IL-6 inhibition reduced NLRP3 inflammasome activation in mice with collage-induced arthritis (CIA). In vitro studies showed that IL-6 directly induced NLRP3 inflammasome activation via cathepsin B (CTSB) in the presence of ATP. In addition, S100A9 induced by ATP stimulation promoted the interaction of CTSB and NLRP3 to activate the NLRP3 inflammasome. Our findings show a novel mechanism of NLRP3 inflammasome activation by IL-6 that may lead to a potential therapy for RA by interrupting the interaction between IL-6 and the NLRP3 inflammasome.Cell-based therapy with tolerizing cells has been applied for the treatment of inflammatory bowel disease (IBD) in previous experimental and clinical studies with promising results. In the current study, we utilized the dextran sulfate sodium (DSS)-induced colitis model, to investigate if tolerogenic dendritic cell-mesenchymal stem cell (tDC-MSC) combination therapy can augment the therapeutic effects of single transplantation of each cell type. The effect of MSC and tDC co-transplantation on the severity of colitis was assessed by daily monitoring of body weight, stool consistency, and rectal bleeding, and compared with control groups. Moreover, the colon length, colon weight, myeloperoxidase (MPO) activity were measured and evaluated with histological analysis of colon tissues. The Treg cell percentage and cytokine levels in spleens and mesenteric lymph nodes (MLNs) were measured by flow cytometry and ELISA, respectively. The results showed co-transplantation of MSCs and tDCs was more effective in alleviating the clinical and histological manifestations of colitis than monotherapy, especially when compared with MSC alone. The protective effects of tDC-MSC were accompanied by the induction of Treg cells and increased the production of anti-inflammatory cytokines in spleens and mesenteric lymph nodes. Together, co-transplantation of MSCs and tDCs could be a promising and effective therapeutic approach in the treatment of IBD. Alveolar hypercoagulation and pulmonary inflammation are important characteristics and they regulate each other in acute respiratory distress syndrome (ARDS). NF-κB pathway has been confirmed to be involved in regulation of this crosstalk. Emodin, a traditional Chinese herb, shows potent inhibitory effect on NF-κB pathway, but whether it is effective in alveolar hypercoagulation and pulmonary inflammation in ARDS remains to be elucidated. The aim of this experiment was to evaluate the efficacy of emodin on LPS-provoked alveolar hypercoagulation and excessive pulmonary inflammation in ARDS, and its potential mechanism. Mice ARDS was set up through LPS (40μl, 4mg/ml) inhalation. Male mice were randomly received with BPS, LPS only, LPS+ emodin (5mg/kg, 10mg/kg, 20mg/kg, respectively) and BAY65-1942, an inhibitor of IKKβ. After 48h of LPS stimulation, pulmonary pathological injury, expressions of Tissue factor (TF), plasminogen activator inhibitor (PAI)-1, activated protein C (APC), collagen Ⅰ, collagen IIIs in BALF, all of which were significantly and dose-dependently attenuated while AT III production was increased by emodin. Meanwhile, emodin effectively inhibited NF-κB pathway activation and attenuated p65 DNA binding activity induced by LPS inhalation. Emodin and BAY-65-1942 had similar impacts in this experiment. Emodin improves alveolar hypercoagulation and fibrinolytic inhibition and depresses excessive pulmonary inflammation in ARDS mice in dose-dependent manner via NF-κB inactivation. Our data demonstrate that emodin is expected to be an effective drug in alveolar hypercoagulation and pulmonary inflammation in ARDS. Emodin improves alveolar hypercoagulation and fibrinolytic inhibition and depresses excessive pulmonary inflammation in ARDS mice in dose-dependent manner via NF-κB inactivation. Our data demonstrate that emodin is expected to be an effective drug in alveolar hypercoagulation and pulmonary inflammation in ARDS.Sesamin is a major component in lignans of sesame seeds, has been described to possess a lot of biological activity. https://www.selleckchem.com/products/VX-770.html The main objective of our study was to investigate the inhibitory effect and novel molecular mechanisms of sesamin on carrageenan-induced lung inflammation in rats. Here we showed that sesamin can obviously reduce polymorphonuclear neutrophils infiltration and exudate volume. Further studies exhibited sesamin can inhibit cytokines release, polymorphonuclear neutrophils markers production and the degree of lung tissues injury. Western blot analysis revealed that sesamin can inhibit the TRAF6 expression and NF-κB pathway activation in lung tissue. We found that sesamin can increase the expression of A20 and TAX1BP1 in lung tissues, and the interaction between the two molecules. In conclusion, all these results demonstrated that sesamin can attenuate carrageenan-induced lung inflammation, the mechanisms that may be related to upregulation of the novel target A20 and TAX1BP1 which can negative regulation for NF-κB pathway.