Co-infections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on disease remains challenging. Interactions between co-infecting pathogens within hosts can alter pathogen transmission, with the impact on transmission typically dependent on the relative arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how these within-host priority effects influence multi-pathogen epidemics, particularly when the arrival order of pathogens at the host-population scale varies. Here, we combined models and experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological models parametrized with within-host priority effects measured at the single-host scale predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would decrease the mean bacterial prevalence in a multi-pathogen setting, while models without within-host priority effects predicted the opposite effect. We tested these predictions with experimental multi-pathogen epidemics. Empirical dynamics matched predictions from the model including within-host priority effects, providing evidence that within-host priority effects influenced epidemic dynamics. Overall, within-host priority effects may be a key element of predicting multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters the order of infection within hosts.For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. https://www.selleckchem.com/products/l-monosodium-glutamate-monohydrate.html While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction.Efficient communication is highly important for the evolutionary success of social animals. Honeybees (genus Apis) are unique in that they communicate the spatial information of resources using a symbolic 'language', the waggle dance. Different honeybee species differ in foraging ecology but it remains unknown whether this shaped variation in the dance. We studied distance dialects-interspecific differences in how waggle duration relates to flight distance-and tested the hypothesis that these evolved to maximize communication precision over the bees' foraging ranges. We performed feeder experiments with Apis cerana, A. florea and A. dorsata in India and found that A. cerana had the steepest dialect, i.e. a rapid increase in waggle duration with increasing feeder distance, A. florea had an intermediate, and A. dorsata had the lowest dialect. By decoding dances for natural food sites, we inferred that the foraging range was smallest in A. cerana, intermediate in A. florea and largest in A. dorsata. The inverse correlation between foraging range and dialect was corroborated when comparing six (sub)species across the geographical range of the genus including previously published data. We conclude that dance dialects constitute adaptations resulting from a trade-off between the spatial range and the spatial accuracy of communication.Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing frequently used methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is provided by statistical methods evaluating higher microbiome variation between host species than within host species, topological similarities between the host phylogeny and microbiome dendrogram, and a positive association between host genetic relationships and microbiome beta diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of phylosymbiosis carries several important implications for advancing knowledge of eco-evolutionary processes that impact host-microbiome interactions and future applications of precision microbiology. Important future steps will be to examine phylosymbiosis beyond bacterial communities, apply evolutionary modelling for an increasingly sophisticated understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to experimental, conceptual and quantitative themes of phylosymbiosis and outlines opportunities ripe for investigation from a diversity of disciplines.