https://www.selleckchem.com/products/yo-01027.html A growing body of evidence suggests that metabolic events play essential roles in the development of liver fibrosis. Immune response gene 1 (IRG1) catalyzes the generation of itaconate, which function as a metabolic checkpoint under several pathological circumstances. In the present study, the hepatic level of IRG1 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. And then the pathological significance of IRG1 and the pharmacological potential of 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, in liver fibrosis were investigated in mice. The results indicated that the hepatic level of IRG1 was upregulated in mice with liver fibrosis. CCl4-induced formation of fibrotic septa and deposition of collagen was aggravated in IRG1 KO mice. IRG1 deletion also resulted in increased expression of transforming growth factor beta 1 (TGF-β1), enhanced phosphorylation of Smad3, elevated level of alpha smooth muscle actin (α-SMA) and hydroxyproline, which were associated with compromised activation of nuclear erythroid 2-related factor 2 (Nrf2)-mediated antioxidant system and exacerbated oxidative stress. Interestingly, supplementation with 4-OI activated Nrf2 pathway, suppressed TGF-β1 signaling and attenuated fibrogenesis. Our data indicated that upregulation of IRG1 might function as a protective response during the development of liver fibrosis, and 4-OI might have potential value for the pharmacological intervention of liver fibrosis.The hepatic protective role of Sagittaria sagittifolia polysaccharide (SSP) and its possible mechanism were discussed in mice and L02 hepatocytes injured by heavy metals mixture of Cd + Cr (VI) + Pb + Mn + Zn + Cu. After 30-day intervention, blood and liver samples were collected for the relevant assessments. Methyl thiazolyl tetrazolium (MTT) assay showed 24 h was the best protecting point and the SSP protection at 1 mg/mL was strongest in L02 hepat