https://www.selleckchem.com/products/itf3756.html Cationic group 4 metallocene complexes with pendant imine and pyridine donor groups were prepared as stable crystalline [B(C6F5)4]- salts either by protonation of the intramolecularly bound ketimide moiety in neutral complexes [(η5-C5Me5)η5-C5H4CMe2CMe2C(R)═N-κNMCl] (M = Ti, Zr, Hf; R = t-Bu, Ph) by PhNMe2H+[B(C6F5)4]- to give [(η5-C5Me5)η5-C5H4CMe2CMe2C(R)═NH-κNMCl]+[B(C6F5)4]- or by chloride ligand abstraction from the complexes [(η5-C5Me5)(η5-C5H4CMe2CH2C5H4N)MCl2] (M = Ti, Zr) by Li[B(C6F5)4]·2.5Et2O to give [(η5-C5Me5)(η5-C5H4CMe2CH2C5H4N-κN)MCl]+[B(C6F5)4]-. Solid state structures of the new compounds were established by X-ray diffraction analysis, and their electrochemical behavior was studied by cyclic voltammetry. The cationic complexes of Zr and Hf, compared to the corresponding neutral species, exhibited significantly enhanced luminescence predominantly from triplet ligand-to-metal (3LMCT) excited states with lifetimes up to 62 μs and quantum yields up to 58% in the solid state. DFT calculations were performed to explain the structural features and optical and electrochemical properties of the complexes.Metal-air batteries will serve as renewable and ecofriendly energy-storage systems in the future because of their high theoretical energy-density performance and unlimited resources, using oxygen as fuel materials compared with commercial lithium-ion batteries. However, the unsuitable inactive reactions at the air-electrode interface (the oxygen reduction reaction and the oxygen evolution reaction) in the metal-air battery are major challenges. In this study, we report nitrogen (N)-doped iron (Fe) and nickel (Ni) bimetallic catalysts with a hollow structure (Fe-Ni nanocage) as outstanding bifunctional catalysts, which have not been reported previously. The open structure in the catalysts simultaneously has an active inner cavity and an outer shell; catalysts have a high active surface area, resulting in rem