https://www.selleckchem.com/products/fps-zm1.html A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.Archaeological and genetic evidence show that sheep were originally domesticated in area around the North of Zagros mountains, North-west of Iran. The Persian plateau exhibits a variety of native sheep breeds with a common characteristic of coarse-wool production. Therefore, knowledge about the genetic structure and diversity of Iranian sheep and genetic connections with other sheep breeds is of great interest. To this end, we genotyped 154 samples from 11 sheep breeds distributed across Iran with the Ovine Infinium HD SNP 600 K BeadChip array, and analyzed this dataset combined with the retrieved data of 558 samples from 19 worldwide coarse-wool sheep breeds. The average genetic diversity ranged from 0.315 to 0.354, while the FST values ranged from 0.016 to 0.177 indicating a low differentiation of Iranian sheep. Analysis of molecular variance showed that 90.21 and 9.79% of the source of variation were related to differences within and between population