https://www.selleckchem.com/products/at13387.html Microemulsions have found a wide range of applications exploiting their chemical and physical properties. Development of microfluidic-based approaches has allowed for the controlled production of highly monodispersed emulsions, including the formation of multiple and hierarchical emulsions. Conventional poly(dimethylsiloxane)-based microfluidic systems require tight spatial control over the surface chemistry when used for double emulsion generation, which can be challenging to achieve on the micrometer scale. Here, we present a two-dimensional device design, which can selectively be surface-treated in a straightforward manner and allows for the formation of uniform water/oil/water double emulsions by combining two distinct hydrophilic and hydrophobic surface properties. These surfaces are sufficiently separated in space to allow for imparting their functionalization without the requirement for lithographic approaches or complex flow control. We demonstrate that a mismatch between the wettability requirements of the continuous phase and the channel wall inherent in this approach can be tolerated over several hundreds of micrometers, opening up the possibility to use simple pressure-driven flows to achieve surface functionalization. The design architecture exhibits robust efficiency in emulsion generation while retaining simple device fabrication. We finally demonstrate the potential of this approach by generating water in oil in water emulsions with lipid molecules acting as surfactants.Calix[4]pyrrole phosphonate-cavitands were used as receptors for the design of supramolecular sensors for creatinine and its lipophilic derivative hexylcreatinine. The sensing principle is based on indicator displacement assays of an inherently fluorescent guest dye or a black-hole quencher from the receptor's cavity by means of competition with the creatinine analytes. The systems were thermodynamically and kinetically characterized r