https://www.selleckchem.com/products/pt2385.html Lignin is considered as a promising substitute for fossil resources, but its efficient conversion remains a huge challenge due to the structural complexity and immiscibility with typical solvents. Herein, a series of surfactant-free microemulsion reactors comprised of n-octane, water and n-propanol were designed and their corresponding phase behaviors alongside their ability to intensify oxidative depolymerization of lignin were explored. Experimental results show that the phenolic monomer yield improves substantially (40-500 wt%) by comparison with processes performed in a single solvent. Detailed characterizations also suggest that the above intensification is rationalized by the solubilization effect of microemulsion system and directional aggregation of lignin at the microemulsion interface.In this study, hydrothermal liquefaction of household waste was performed to produce valuable liquid hydrocarbons with aqueous phase as by-product. Photocatalytic reforming of aqueous phase was carried out for hydrogen production. Liquefaction of 15 g waste at temperature of 320 °C and solvent to biomass ratio of 13.33 mL/g produced bio-oil of 32.4 wt% and hydrogen 21 wt% in gas product. Hydrogen production from aqueous phase was studied in presence of various concentrations of activated carbon doped Fe/TiO2 catalyst (0.2-1 wt%). Hydrogen yield was 32 wt% when 0.6 wt% of catalyst was used to reform aqueous phase. To ease of operation in economical manner the reusability study of the catalyst was evaluated and it was found to be active for three consecutive cycles. As outcome of this study, household waste can serve for a whooping amount of hydrogen (53 wt%) production via liquefaction and photocatalytic reforming process.Second breast cancer (SBC) is the most common solid cancer among Hodgkin Lymphoma (HL) female survivors. We reviewed the related modifying risk factors, radiation-induced carcinogenesis, tumors characteristics,