https://www.selleckchem.com/ALK.html Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.Recent advances in metagenomic technology and computational prediction may inadvertently weaken an individual's reasonable expectation of privacy. Through cross-kingdom genetic and metagenomic forensics, we can already predict at least a dozen human phenotypes with varying degrees of accuracy. There is also growing potential to detect a "molecular echo" of an individual's microbiome from cells deposited on public surfaces. At present, host genetic data from somatic or germ cells provide more reliable information than microbiome samples. However, the emerging ability to infer personal details from different microscopic biological materials left behind on surfaces requires in-depth ethical and legal scrutiny. There is potential to identify and track individuals, along with new, surreptitious means of genetic discrimination. This commentary underscores the need to update legal and policy frameworks for genetic privacy with additional considerations for the information that could be acquired from microbiome-derived data. The article also aims to stimulate ubiquitous discourse to ensure the protection of genetic rights and liberties in the post-genomic era. Video abstract. Mechanisms driving the progression of chronic lymphocytic leukemia