https://www.selleckchem.com/products/Raltitrexed.html Solid organ (liver, spleen, and kidney) hemorrhage is often life-threatening and can be difficult to stop in critically ill patients. Traditional techniques for arresting this ongoing bleeding include coagulation by high voltage electrocautery, topical hemostatic application, and the delivery of ignited argon gas. The goal of this study/video was to demonstrate the efficacy of a new energy device for arresting persistent solid organ hemorrhage.A novel instrument utilizing bipolar radiofrequency (RF) energy which acts to ignite/boil dripping saline from a simple handpiece is employed to arrest ongoing bleeding from solid organ injuries in a porcine model. This instrument is extrapolated from experience within elective hepatic resections. An escalating series of injuries to solid organs within a porcine model will be created. This will be followed by arresting hemorrhage with this novel energy device in sequence. A standard suction device will also be employed. This simple saline/RF energy instrument has the potential to arrest ongoing solid organ surface/capsular bleeding, as well as moderate hemorrhage associated with deep lacerations.There is a growing interest in using liposomes to deliver compounds in vivo particularly for targeted treatment approaches. Depending on the liposome formulation, liposomes may be preferentially taken up by different cell types in the body. This may influence the efficacy of the therapeutic particle as progression of different diseases is tissue- and cell-type-specific. In this protocol, we present one method for synthesizing and fluorescently labeling liposomes using DSPC, cholesterol, and PEG-2000 DSPE and the lipid dye DiD as a fluorescent label. This protocol also presents an approach for delivering liposomes in vivo and assessing cell-specific uptake of liposomes using flow cytometry. This approach can be used to determine the types of cells that take up liposomes and quantify