The relative expression level of CmGSTU7, CmGSTU10, CmGSTU18, CmGSTF2 and CmGSTL1 in roots of melon seedlings was significantly higher than that in control group. It suggested that the five GSTs might play an important role in cinnamic acid mediated autotoxicity stress in melon. The results of this paper were helpful to reveal the evolution and functional succession of GST family and further understand the response of GST to autotoxicity stress in melon.Chimeric antigen receptor (CAR) T cells use re-engineered cell surface receptors to specifically bind to and lyse oncogenic cells. Two clinically approved CAR-T-cell therapies have significant clinical efficacy in treating CD19-positive B cell cancers. With widespread interest to deploy this immunotherapy to other cancers, there has been great research activity to design new CAR structures to increase the range of targeted cancers and anti-tumor efficacy. However, several obstacles must be addressed before CAR-T-cell therapies can be more widely deployed. These include limiting the frequency of lethal cytokine storms, enhancing T-cell persistence and signaling, and improving target antigen specificity. We provide a comprehensive review of recent research on CAR design and systematically evaluate design aspects of the four major modules of CAR structure the ligand-binding, spacer, transmembrane, and cytoplasmic domains, elucidating design strategies and principles to guide future immunotherapeutic discovery. High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence. TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence. This study aimed to establish and validate a novel scoring system based on a nomogram for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Patients with PE and confirmed aetiology who underwent diagnostic thoracentesis were included in this study. One retrospective set (N=1261) was used to develop and internally validate the predictive model. The clinical, radiological and laboratory features were collected and subjected to logistic regression analyses. The primary predictive model was displayed as a nomogram and then modified into a novel scoring system, which was externally validated in an independent set (N=172). The novel scoring system was composed of fever (3 points), erythrocyte sedimentation rate (4 points), effusion adenosine deaminase (7 points), serum carcinoembryonic antigen (CEA) (4 points), effusion CEA (10 points) and effusion/serum CEA (8 points). With a cutoff value of 15 points, the area under the curve, specificity and sensitivity for identifying MPE were 0.913, 89.10%, and 82.63%, respectively, in the training set, 0.922, 93.48%, 81.51%, respectively, in the internal validation set and 0.912, 87.61%, 81.36%, respectively, in the external validation set. https://www.selleckchem.com/products/sodium-phenylbutyrate.html Moreover, this scoring system was exclusively applied to distinguish lung cancer with PE from tuberculous pleurisy and showed a favourable diagnostic performance in the training and validation sets. This novel scoring system was developed from a retrospective study and externally validated in an independent set based on six easily accessible clinical variables, and it exhibited good diagnostic performance for identifying MPE. NFSC grants (no. 81572942, no. 81800094). NFSC grants (no. 81572942, no. 81800094). PRR (Pattern Recognition Receptor) agonists have been widely tested as potent vaccine adjuvants. TLR7 (Toll-Like Receptor 7) and NOD2 (nucleotide-binding oligomerization domain 2) are key innate receptors widely expressed at mucosal levels. Here, we evaluated the immunostimulatory properties of a novel hybrid chemical compound designed to stimulate both TLR7 and NOD2 receptors. The combined TLR7/NOD2 agonist showed increase efficacy than TLR7L or NOD2L agonists alone or combined in different in vitro models. Dual TLR7/NOD2 agonist efficiently stimulates TLR7 and NOD2, and promotes the maturation and reprogramming of human dendritic cells, as well as the secretion of pro-inflammatory or adaptive cytokines. This molecule also strongly induces autophagy in human cells which is a major intracellular degradation system that delivers cytoplasmic constituents to lysosomes in both MHC class I and II-restricted antigen presentation. In vivo, TLR7/NOD2L agonist is a potent adjuvant after intranasal administration with NP-p24 HIV vaccine, inducing high-quality humoral and adaptive responses both in systemic and mucosal compartments. Use of TLR7/NOD2L adjuvant improves very significantly the protection of mice against an intranasal challenge with a vaccinia virus expressing the p24. Dual TLR7/NOD2L agonist is a very potent and versatile vaccine adjuvant and promote very efficiently both systemic and mucosal immunity. This work was supported by Sidaction. This work was supported by Sidaction.