https://www.selleckchem.com/products/r-hts-3.html In this study, 95 accessions of proso millet (Panicum miliaceum L.) were characterized for starch physicochemical properties, including apparent amylose content (AAC), gel textural properties, Rapid Visco Analyzer (RVA) pasting viscosity properties, thermal and retrogradation properties. Based on genotypic data, the genetic diversity and inter-relationship of these starch traits were analyzed. Diverse starch quality was found, for example, AAC ranged from 0 to 32.3%, gelatinization temperature (GT) varied from 71.5 to 79.0 ℃, and RVA profile showed distinct patterns among proso millet of different AAC types. Interestingly, high AAC proso millet usually had GT lower than that of low AAC proso millet, which is different from the findings in rice starch. Many starch traits were significantly correlated and most of the 18 tested traits could be classified as either AAC-related traits or GT-related traits. In summary, the information presented here will be useful for further development of proso millet products. Wheat flour noodles are sometimes fortified with β-glucan for nutritional value, but this can decrease eating quality. The contributions of β-glucan and starch molecular fine structure to physicochemical properties of wholemeal oat flour and to the texture of oat-fortified white salted noodles were investigated here. Hardness of oat-fortified noodles was controlled by the longer amylopectin chains (DP ≥ 26) and amount of longer amylose chains (DP ≥ 1000). Higher levels of β-glucan, in the range from 3.1 to 5.2%, result in increased noodle hardness. Pasting viscosities of wholemeal oat flour positively correlate with the hardness of oat-fortified noodles. The swelling power of oat flour is not correlated with either pasting viscosities of oat flour or noodle hardness. Longer amylopectin chains and the amount of longer amylose chains both control the pasting viscosities of oat flour, which in turn affect noodle text